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Abstract

MAVKA (Multi-Analysis of Variability by Kateryna Andrych) program was developed
on base of “Observational Obscurer” (Andronov, 2001) that was rewritten in the Delphi 7
environment. It contains a set of subroutines suitable for fast viewing, interactive filtering
and processing time series, determination extremum for subintervals. Program allows to
view the data and move to different parts of it, to make scale transformations, to marked
subintervals for later approximation and determination extrema. First of all, it has been
developed for variable star observers, but it can be used for any data, not only light
curves.
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Introduction

One of the aims of this program is fast visualizing the data. It also has additional pos-
sibilities oriented to data checking and reduction. After running, the data are visualized
with determining the limits automatically. The cursor marks the point which character-
istics are shown. This possibility allows to check the data, especially outstanding points
and, if decided that this point is wrong, to delete it.

If the data consists of some groups of points of joint origin (same filter, observer),
these groups can be analyzed separately. There is also a possibility of a conversion of
times to scale and transform coordinates from linear to logarithmic and back, inverting
etc.

We also focused on approximations, when time series are close to the extremum of
brightness of the object. From such data needed to determine characteristics of extremum:
moment, magnitude, width of flat part of eclipse (if there is transit) and corresponding
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accuracy estimates. For this task, the software MAVKA allows to compute necessary
parameters of the extrema using one out of nine realized methods.

Some types of approximation functions were divided into few groups according to
different shapes of extrema and variability types.

Methods of the analysis

Eleven different groups of functions were realized in program.
For all approximations, the linear parameters are determined by the method of least

squares, and for non-linear - by the method of differential corrections, after determination
of an initial set of parameters corresponding to a minimum of the test function Φ at a
grid.

∙ Algebraic polynomial approximation of different degrees 𝛼. The program automat-
ically chooses the most precise degree, which corresponds to the best accuracy of
the moment of extremum.

𝑥𝑐(𝑡) =
𝑚∑︁
𝛼

𝐶𝛼 · 𝑓𝛼(𝑡), 𝑓𝛼(𝑡) = 𝑡𝛼−1 (1)

∙ "Symmetrical" algebraic polynomial approximation, which use only even degrees of
deviation from point of symmetry.

𝑥𝑐(𝑡) =
𝑚∑︁
𝛼

𝐶𝛼 · 𝑓𝛼(𝑡), 𝑓𝛼(𝑡) = (𝑡− 𝑡0)
2(𝛼−1) (2)

The next two methods are

∙ New Algol Variable, that was proposed by Andronov (2010, 2012):

𝑥𝑐(𝑡) = 𝐶1 + 𝐶2

⎛⎝1 −

(︃
1 −

(︂
𝑡− 𝐶3

𝐶4

)︂𝐶5
)︃1.5

⎞⎠ (3)

∙ the function proposed by Mikulášek et al. (2015):

𝑥𝑐(𝑡) = 𝐶1 + 𝐶2

(︃
1 −

(︂
1 − 𝑒

(︁
1−𝑐ℎ

(︁
𝑡−𝐶3
𝐶4

)︁)︁)︂𝐶5
)︃

(4)

In these forms, the functions are applied for approximation of the whole light curve.
In the case, where the data are just close to the extremum, the matrix of normal
equations becomes degenerate. The interval does not contain out-of-eclipse parts,
and therefore we do not have enough data. Formally, the amplitude becomes infinite,
and the error estimates are not available because of rounding errors.

To avoid degeneration of the matrix of the normal equation, the last two functions
were expanded into the Taylor series, and the following approximations are used:
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∙ for the "New Algol Variable" (Andronov et al., 2017)

𝑥𝑐(𝑡) = 𝐶1 + 𝐶2

⃒⃒⃒
𝑧
⃒⃒⃒𝐶6

+ 𝑐3

⃒⃒⃒
𝑧
⃒⃒⃒2𝐶6

, 𝑧 = 𝑡− 𝐶5 (5)

∙ for the function proposed by Prof. Z. Mikulášek (2015):

𝑥𝑐(𝑡) = 𝐶1 + 𝐶2

⃒⃒⃒
𝑧
⃒⃒⃒𝐶6

+ 𝑐3

⃒⃒⃒
𝑧
⃒⃒⃒𝐶6+2

, 𝑧 = 𝑡− 𝐶5 (6)

These forms of functions realized in MAVKA instead of complete versions, which
were oriented to complete light curves.

In some cases, for example approximation of flat eclipses and exoplanet transitions,
it is more precise to divide our data into three intervals, each of them is approximated
by its own function. In this case, an additional parameter is the duration of the
bottom part of the eclipse (total eclipse or a transit).

The additional parameters (the borders between the three intervals) are determined
by minimizing the test function (sum of the squares of the residuals of the data
from the approximation) in respect to these parameters, and then corrected using
differential equations. For the visualization, we have applied an own “gradient zebra”
– type colour scheme (Andrych et al., 2017) instead of a classical “lines of constant
level” (e.g. Tkachenko, 2016).

We take into account a locally paraboloidal shape of the test function. Thus, we
made a following routine for the 2D-plots. The test function was computed over a
grid (201×201). Then we computed a dimensionless value

𝑝 =

√︂
Φ − Φ𝑚𝑖𝑛

Φ𝑚𝑎𝑥 − Φ𝑚𝑖𝑛

(7)

which we expect to represent a set of equal levels better than (typically) without
the square root. For an exact paraboloid, the constant step in 𝑝 leads to concentric
ellipses with a constant step in each fixed direction from the center. The interval
[0,1] for 𝑝 is split into 𝑁𝑝 = 10 subintervals, inside each of them the color linearly
changes from blue to yellow.

This makes an abrupt change of color between the subintervals. Such a kind of
presentation allows to get advantages of the “gradient” and “lines” styles.

We have proposed some new methods for this case.

∙ The Wall-Supported Parabola method (Andrych et al., 2017): part of data that is
very close to extremum is approximated by parabola, but branches are approximated
by a sum of a parabola and a contribution of another degree.

Let 𝐶5 and 𝐶6 be transition points from one function to another.
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In the case of transition or eclipse for a small deviation of time from the point of the
inner or outer contact, the flux increases/decreases proportionally to the difference
(𝐶5 − 𝑡) or (𝑡− 𝐶6) in the non-integer power 1.5.

𝑥𝑐(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶1 + 𝐶2

(︀
𝑡− 𝐶5+𝐶6

2

)︀2
+ 𝐶3 (𝐶5 − 𝑡)1.5 , 𝑡 < 𝐶5

𝐶1 + 𝐶2

(︀
𝑡− 𝐶5+𝐶6

2

)︀2
, 𝐶5 < 𝑡 < 𝐶6

𝐶1 + 𝐶2

(︀
𝑡− 𝐶5+𝐶6

2

)︀2
+ 𝐶3 (𝑡− 𝐶6)

1.5 , 𝑡 > 𝐶6

(8)

∙ Wall-Supported Line (Andrych et al., 2017): it is nearly similar, but instead of the
parabola there is a constant line for the central interval. This method is useful for
flat minima and it allows one to calculate the duration of the full eclipse or transition
if the limb darkening effect can be neglected.

𝑥𝑐(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶1 + 𝐶2 (𝐶5 − 𝑡)1.5 + 𝐶3 (𝐶5 − 𝑡)3.5 , 𝑡 < 𝐶5

𝐶1, 𝐶5 < 𝑡 < 𝐶6

𝐶1 + 𝐶2 (𝑡− 𝐶6)
1.5 + 𝐶3 (𝑡− 𝐶6)

3.5 , 𝑡 > 𝐶6

(9)

∙ Wall-Supported Asymptotic Parabola. The method improves the method of “Asymp-
totic parabola” (Marsakova and Andronov, 1996) by adding two parameters describ-
ing terms at the left and right interval, which correspond to ascending and descend-
ing branches. This method may be effective for approximation of the symmetric
eclipses. For pulsating variables, it may be computed, but has no physical meaning.

𝑥𝑐(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶1 + 𝐶2 (−𝐷2 − 2𝐷𝑣) + 𝐶3 (𝐶5 − 𝑡)1.5 , 𝑡 < 𝐶5

𝐶1 + 𝐶2𝑣
2, 𝐶5 < 𝑡 < 𝐶6

𝐶1 + 𝐶2 (−𝐷2 − 2𝐷𝑣) + 𝐶3 (𝑡− 𝐶6)
1.5 , 𝑡 > 𝐶6

(10)

where
𝐷 =

𝐶6 − 𝐶5

2
, 𝑣 = 𝑡− 𝐶6 + 𝐶5

2

∙ Parabolic Spline. This approximation has more parameters than previous ones.
Therefore, transition points from one function to another are C6 and C7. The
method improves the method of “Asymptotic parabola” (Marsakova and Andronov,
1996) by adding two parameters describing parabolic terms at the left and right
interval. This method allows to extend the width of the interval (and so to increase
the number of points) to get a same accuracy, as the “Asymptotic parabola”.

𝑥𝑐(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶1 + 𝐶2𝑡 + 𝐶3𝑡

2 + 𝐶4 (𝐶6 − 𝑡)2 , 𝑡 < 𝐶6

𝐶1 + 𝐶2𝑡 + 𝐶3𝑡
2, 𝐶5 < 𝑡 < 𝐶6

𝐶1 + 𝐶2𝑡 + 𝐶3𝑡
2 + 𝐶5 (𝑡− 𝐶7)

2 , 𝑡 > 𝐶7

(11)
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∙ Asymptotic Parabola.

There are two lines (the “asymptotes”), which are connected with a parabola, so
the function and it’s derivative are continuous. Previous experience had shown,
that this is one of the best methods for asymmetrical maxima of generally pulsating
variables. This method was originally proposed by Marsakova & Andronov (1996).

The transition points from one interval to another are 𝐶4 and 𝐶5.

𝑥𝑐(𝑡) =

⎧⎨⎩𝐶1 + 𝐶2

(︁⃒⃒⃒
𝑣
⃒⃒⃒
−𝐷

)︁
𝐷 + 𝐶3𝑣, 𝑡 < 𝐶4 or 𝑡 > 𝐶5

𝐶1 + 𝐶2𝑣
2 + 𝐶3𝑣, 𝐶4 < 𝑡 < 𝐶5

(12)

where
𝐷 =

𝐶5 − 𝐶4

2
, 𝑣 = 𝑡− 𝐶5 + 𝐶4

2

∙ Hyperbolic Secant function (sech)

The hyperbolic secant:

sech(𝑧) =
1

cosh(𝑧)
=

2

exp(𝑧) + exp(−𝑧)
(13)

is a symmetrical function. To improve it to make it asymmetrical, the coefficients
in the exponents were defined to be generally different (Andronov, 2005):

𝑥𝑐(𝑡) = 𝐶1 + 𝐶2

(︁
1 − 2

exp(𝐶4(𝑡− 𝐶3)) + exp(−𝐶5(𝑡− 𝐶3))

)︁
(14)

Physically, this function corresponds to an exponential rise of the signal from a
standstill value 𝐶1 + 𝐶2 to the value 𝑥𝑐(𝐶3) = 𝐶1 and further to the extremum,
which is shifted from 𝐶3. The characteristic timescales of the exponential change
are

𝜏left =
1

𝐶5

, 𝜏right =
1

𝐶4

(15)

Exponential shape of the signals is often observed in physics. In a logarithmic scale,
the function is a good approximations of two asymptotic straight lines linked by a
smooth function near the extremum. The stellar magnitudes are logarithmic values,
so the ascending and descending branches of pulsating and outbursting stars are
close to the straight lines, except the extemum. This approximation has 3 “non-
linear” parameters, a lot of computations of the exponent, and thus is much slower
than the “asymptotic parabola” with simple lines and a parabola. However, it may
be useful for determining the characteristics of some outbursts or flares.

∙ BSK (Bódi, Szatmáry & Kiss L. L., 2016) have used another complicated function
with 3 non-linear parameters, which resembles the log-normal distribution function.
For exactly symmetric functions, it asymptotically tends to be a gaussian, thus is
not useful in its original form. The second "non-linear" parameter is well determined
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only in the case of relatively wide interval, which covers the data from the previous
to the next extremum (i.e. from previous to the next minimum, if determining the
maximum).

What methods are better for different cases

In program, the user can choose few methods, then the algorithm automatically de-
fines the method, which corresponds to the best accuracy of the moment of extremum.
The variance of the residuals left after subtraction of the approximation curve from the
observations also takes into account.

The user can control results, because sometimes the approximation may be mathemat-
ically accurate, but formally the values of parameters are out of the physically realistic
intervals. And also one can previously mark first and last points for intervals in the big
data file and then Program can automatically go through all marked intervals.

We tested all MAVKA methods using generated data and real observations from the
AAVSO database. The aim of the first part was to determine the most appropriate
methods for each type of extrema shapes. In the second part we processed typical phase
curves for the different variability types from the AAVSO database.

In the first part we generated about 5000 extrema of 7 different shapes: three sym-
metric (normal, sharp and flat-bottom one) and four asymmetric. We changed several
additional parameters such as noise, number of points and time interval. The obtained
value from was absolute average deviation between generated and computed moment of
minimum.

Due to this testing we divide all methods into three groups:

∙ universal methods (they allows to get good approximation for both – symmetrical
and asymmetrical shapes of extrema):

– Algebraic polynomial

– Parabolic Spline of defect 1

– Asymptotic Parabola

∙ methods that are useful just for symmetrical extrema:

– "Symmetrical" algebraic polynomial

– New Algol Variable

– “the function of Prof. Z. Mikulášek”

∙ methods for wide extrema with strong differences between the bottom and the
branches:
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– “Wall-Supported Parabola” (WSP)

– “Wall-Supported Line” (WSL)

– “Wall-Supported Asymptotic Parabola” (WSAP)

Due to the testing for the different variability types from the AAVSO database we get
that also three groups of methods:

∙ first one is useful for pulsating and eruptive variables and also some eclipsing binaries
with sharp extrema:

– Algebraic polynomial

– Parabolic Spline of defect 1

– Asymptotic Parabola

∙ second group is useful for the rotating variables and some pulsating types with
symmetrical extrema:

– "Symmetrical" algebraic polynomial

– New Algol Variable

– “the function of Prof. Z. Mikulášek”

∙ last one is for the eclipsing binaries and exoplanet transits:

– “Wall-Supported Parabola” (WSP)

– “Wall-Supported Line” (WSL)

– “Wall-Supported Asymptotic Parabola” (WSAP)

Running MAVKA

The arrays reserved are the following: 𝑡𝑖 - argument; 𝑥𝑖 - signal; 𝑠𝑖 - error estimate
(sometimes may be used as a working array); 𝑒𝑖 - working array. Contrary to electronic
tables, the number of arrays is fixed. The graph always shows a dependence of 𝑥𝑖 vs
𝑡𝑖. The value 𝑖 indicates a number of the current point, 𝑖1 and 𝑖2 are the first and last
numbers of the point seen at the current screen.

After reading the columns for t and x, the data are plotted with automatic determi-
nation of the limits and corresponding scaling.
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Submenu “File”

The meaning of options “Open”, “Re-open” , “Save as... ”, “Exit” are obvious. “Save” -
save all data with automatically created name.

“Number of column x” - you can set number of column for the signal along vertical
axis. Numeration starts from 0! By default for the horizontal axis program uses first
column, and second one for the vertical axis.

“Save image” - save visible interface as an image (just without right part with text).
“Save visible” - save visible data points in the new file. The new file name contains

numbers of the first and last data point due to initial file.
“File for intervals” - if you got huge data interval and want to determine parameters

for some extrema in it, you can create “file of intervals”. This file contains edges for
small data intervals near extrema. Then you need to upload this file in MAVKA using
this function and navigate in marked intervals using Prev. Interval and Next Interval
in Navigate submenu or using hotkeys. Program also can automatically go through all
marked intervals if you choose feature “for all next intervals” (Fig.1). Be careful to upload
a correct “file for intervals” before using this feature. If something goes wrong you can
abort this evaluation using “abort do for all” in approximation submenu.

Submenu “Edit”

“Delete current point” - delete one point at the "cursor" (this is used to delete "bad"
points (are also referred to as "outliers", "anomalies ", "noise", "deviations" or "excep-
tions");

“Delete bad points (same level)” - delete all points with current signal value (remove
horizontal line). This option may be used, if such a value indicates wrong value (out of
detection);

“Sort” - if data in initial file are not sorted according to time (first column), you should
sort it before reduction (the methods are oriented to analyse data between the numbered
points, but not to check the whole set of data for being included in the interval);

“Average for same time” - if data file contains few values for the same time moment
you can calculate averages and build them instead of initial data. This option is useful
for phase curve analyses;

“Delete current author” - delete all data that marked by one author (3-symbols abbre-
viation of the observer). This is used, if the whole subset of data is an "outlier", e.g. the
series in a different filter, or very noisy data.

Submenu “Navigate”

“First at screen” - move cursor to the first point of the screen;
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“Last at screen” - move cursor to the last point of the screen;
“Next” / “Prev” - move cursor to the next/previous point;
“ScrollLeft” / “ScrollRight” - shift window to the left/right by a half-width;
“Top” - upper point of the screen;
“Bottom” - lowest point of the screen;
“Mark left” / “Mark right” - mark left/right edges for extrema subintervals. These

edges (point number in file and corresponding time moment) writes in new file with the
same name, but “!” in the end of data file extension;

“Prev. Interval” - previous marked data subinterval;
“Next Interval” - next marked data subinterval;
“Go to interval number” - move to the interval due to it number in “file of intervals”.

Submenu “View”

“ZoomIn” - zoom (twice pixels per argument interval);
“ZoomOut” - unzoom (twice argument interval per pixel);
“Center” - center current point at the screen;
“Inverse x” - inverse vertical axis;
“Left edge” - make current point the left limit of the interval;
“Right edge” - make current point the right limit of the interval;
“Restore interval” - restore automatic limits;
“Refresh” - resize current window according to the signal limits;
“Print precision” - set number of digits before and after the decimal point for both

axises on the screen;
“Hint” - change form of cursor;
“Hint light author” - if data file contains some information about author of observation

you can mark them with different colour.

Submenu “Transform”

The meaning of options “lg t” , “lg x” , “ 10∧ 𝑡 ” , “ 10∧𝑥 ” and “ 𝑡 = 1/𝑡 ” are obvious.
But you should remember that 𝑡 is expressed at a horizontal axis (abscissa), 𝑥 - at the
vertical one (ordinate).

“i -> m” - the data are transferred from intensities to magnitudes in the sense 𝑥𝑖 =

−2.5 lg(𝑥𝑖/𝑥𝑚𝑎𝑥);
“m -> i” - the data are transferred from magnitudes to intensities in the sense 𝑥𝑖 =

10−0.4(𝑥𝑖−𝑥𝑚𝑖𝑛).
It should be noted that, after making opposite commands, m->i, i->m, the result

will not return to the initial set of 𝑚𝑖, as the intensities are calibrated to the maximum
intensity. So all values will be shifted by a constant 𝑚𝑚𝑎𝑥. The scaling to the maximum
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brightness was made to avoid very large and very small values, which may not be readable
in some external programs for the data reduction.

Submenu “Mean”

“Change NNH” - set number m of subintervals or points for mean calculation;
“Bin mean” - split interval into subintervals 𝑙 = 1..𝑚, compute mean 𝑥𝑙 for each,

unbiased root mean square deviation of the data from the mean 𝜎𝑙 , error estimate of the
mean 𝜎𝑥𝑙. Results (𝑙, 𝑥𝑙, 𝜎𝑙, 𝜎𝑥𝑙) are written (appended) to the file with a standard name
"𝑓4.𝑑𝑎𝑡”;

“Point mean” - compute mean values from 𝑚 subsequent points and append it to the
same file as in the “Bin mean”;

“Scalegram mean” - computes the scalegram assuming a histogram-like fit (spline of
power 0 and defect 1) of the data present at the current window for numbers of subintervals
𝑚 = 1..50. Then the parameter NNH is chosen, which corresponds to the maximal value
of the signal-to-noise ratio (SNR), and the “Bin mean” is computed. So the difference is
in the automatic ("scalegram") or manual setting of NNH.

The weights of all the data are assumed to be the same.
The following test functions are written to the file with fixed name "_Scale.dat": the

number of a trial subinterval 𝑚, number of subintervals with at least one point 𝑚1; r.m.s.
deviation of the smoothing value from the mean 𝜎𝐶 ; unbiased value of the r.m.s. deviation
of the data from corresponding smoothing values 𝜎0; the "S/N" (’signal/noise") ratio
𝜎𝐶/𝜎𝑥𝑐; the r.m.s. error estimate of the smoothing value 𝜎𝑥𝑐; the number of points in the
current window n. The file "_Scale.dat" may be studied separately, but, after running the
present command, the program determines 𝑚𝑚𝑎𝑥 corresponding to the maximal value of
"SNR"="S/N" and uses it for showing the "histogram-like". This feature is an extension
of that available by “Bin mean”, because allows to use the optimal value of 𝑚 instead of
the user-defined one.

Submenu “Approximation”

This submenu in program allows to determine parameters of extremum by different
methods. If you click on the name of method, program evaluate approximation curve
and calculate extremum parameters for data in the current window. If method divides
data interval into three subintervals, the boarders between them marked by black vertical
lines. The determined extremum point is specified by crossed red lines. Size of the red
rectangle correspond to the error estimates for time and magnitude.

Left side of the submenu allows to approximate visible (only !) data by one among 11
functions:
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∙ Polynomial - algebraic polynomial

∙ Symmetrical polynomial

∙ WSP - Wall-Supported Parabola

∙ WSL - Wall-Supported Line

∙ NAV - New Algol Variable in the Tailor series form

∙ Mikulashek - the function proposed by Prof. Z. Mikulášek

∙ WSAP - Wall-Supported Asymptotic Parabola

∙ Parabolic spline - Parabolic Spline of defect 1

∙ AP - Asymptotic Parabola

In addition, the user can control results, because while the approximation may be
mathematically accurate, formally the values of parameters may be out of physically
realistic intervals (Fig. 2). So if you click “Yes” all information about extremum will be
saved in result files (read more in the corresponding subsection below).

Figure 1: Visual control of approximation.

“choose approximation” - the user can choose few methods and the algorithm auto-
matically defines the method, which corresponds to the best accuracy of the moment of
extremum and root mean square. For this case you should click on methods that you
want to compare.

“run approximation” - allows to evaluate approximation with the previous settings
(same methods as for previous interval or file).

“do for all next intervals” - program automatically applies functions to the all next
intervals from the “file of intervals” (previously choosen ones, if you have used “choose
approximation” or “run approximation”, or opens the function selection menu). In this
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case result ( the moment of extremum and etc.) will be written in corresponding files
(read more in the corresponding subsection below).

“abort do for all” - abort approximation.
“Save image” - if it is checked program save image with data points and approximation

in the same folder as initial data file.

Figure 2: MAVKA submenu for choosing some approximation methods.

Option “Square”

It shows the type colour scheme for approximations, that divide data into the subin-
tervals. It presents visualisation of the sum of the squares of the residuals of the data
from the approximation for different values of the borders between the three intervals.
Crossed black lines shows best values for these parameters.

Figure 3: Two examples of the colour scheme for different intervals.

Result files

MAVKA creates few different result files. They are automatically created in the same
folder as the initial data file. Each of them contains “head string” that tell you what data
is in this file. For convenience, we use some abbreviations:
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𝑃𝑜𝑖𝑛𝑡 : 𝑠𝑡𝑎𝑟𝑡𝑒𝑛𝑑 - numbers of first and last points for the approximated interval in
initial data file;

𝑠𝑖𝑔𝑚𝑎0 - root mean square;
𝑡𝑖𝑚𝑒 - time of the extremum;
𝑚𝑎𝑔 - magnitude of the extremum;
+− - error for the previously written in the head string parameter;
𝑚𝑒𝑡ℎ𝑜𝑑 – shorten name of the approximation method;
𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒 – initial data file name;
𝑙𝑖𝑛_𝑐𝑜𝑒𝑓 - number of linear coefficients;
𝑛𝑜𝑛𝑙𝑖𝑛_𝑐𝑜𝑒𝑓 – obviously, number of nonlinear parameters in basic function;
𝑐1, 𝑐2, . . . - values of corresponding coefficients for approximation (if in this method

there are less than 9 coefficients excess ones are equal to zero);
𝑚𝑎𝑥_𝑜𝑟_𝑚𝑖𝑛 – marked it is maximum or minimum of the light curve.
If in “choose method” submenu (Fig.1) you click on option “make a new result file”,

MAVKA creates two new files for extreme parametres. Name of this files are name of initial
data file plus ”𝑟𝑒𝑠𝑢𝑙𝑡.𝑑𝑎𝑡𝑜𝑟ı𝑏𝑎𝑑.𝑑𝑎𝑡𝑖𝑛𝑡ℎ𝑒𝑒𝑛𝑑.𝐷𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑜𝑛𝑦𝑜𝑢𝑎𝑛𝑠𝑤𝑒𝑟𝑖𝑛𝑡ℎ𝑒ı𝑠𝑎𝑣𝑒𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑢𝑏𝑚𝑒𝑛𝑢𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑎𝑟𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑓𝑖𝑙𝑒.𝐼𝑛𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑒𝑥𝑡𝑟𝑒𝑚𝑎𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑡ℎ𝑎𝑡𝑤𝑒𝑔𝑒𝑡𝑏𝑦𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠(𝑖𝑓𝑦𝑜𝑢𝑐ℎ𝑜𝑜𝑠𝑒𝑓𝑒𝑤𝑜𝑓𝑡ℎ𝑒𝑚)𝑎𝑟𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝑖𝑛𝑓𝑖𝑙𝑒ı𝑎𝑙𝑙𝑚𝑒𝑡ℎ𝑜𝑑𝑒𝑥𝑡𝑟.𝑑𝑎𝑡.

File “OM.dat” contains all messages that are written on the right side of the interface.
Typically, it may be used for debugging errors, if any.

Best approximation curve also is written in the file with ending “𝑎𝑝𝑝𝑟.𝑑𝑎𝑡.

Hotkeys

The program is rapidly operated by hotkeys, contrary to the menu-oriented mouse
control. This option allows to speed up the work after learning the keys for most frequently
used operations.

To exit the program, press 𝐴𝑙𝑡 + 𝑋. Mainly most of the hotkeys written near the
options in menu.

There are some hotkeys that are not presented in visible menu.
Screen changes
+ - zoom (twice pixels per argument interval);
− - unzoom (twice argument interval per pixel);
/ + 𝐸𝑛𝑡𝑒𝑟 - resize current window according to the signal limits;
𝐻𝑜𝑚𝑒 - first point of the screen;
𝐸𝑛𝑑 - last point of the screen;
𝐷𝑜𝑤𝑛 - lowest point of the screen;
𝑈𝑝 - upper point of the screen;
𝐷𝑒𝑙 - delete point above cursor;
𝐿𝑒𝑓𝑡 – move cursor to the next point: let 𝑖 be the serial number of point, 𝑖 := 𝑖 + 1;
𝑅𝑖𝑔ℎ𝑡 – 𝑖 := 𝑖− 1;
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0 + 𝐸𝑛𝑡𝑒𝑟 – 𝑖 := 𝑖− 10;
. + 𝐸𝑛𝑡𝑒𝑟 – 𝑖 := 𝑖 + 10;
4 + 𝐸𝑛𝑡𝑒𝑟 – 𝑖 := 𝑖− 100;
5 + 𝐸𝑛𝑡𝑒𝑟 – 𝑖 := 𝑖 + 100;
𝑍 + 𝐸𝑛𝑡𝑒𝑟 – 𝑖 := 𝑖− 1000;
𝑋 + 𝐸𝑛𝑡𝑒𝑟 – 𝑖 := 𝑖 + 1000;
) + 𝐸𝑛𝑡𝑒𝑟- delete all points with current signal value (remove horizontal line). This

option may be used, if such a value indicates wrong value (out of detection).
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