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Advanced Time Series Analysis of
Generally Irregularly Spaced Signals:
Beyond the Oversimplified Methods
IVAN L. ANDRONOV, DSC, PROF

11.1 INTRODUCTION
Time series analysis is the tool to study the dynamics
and evolution of processes and objects of any nature.
Its main aim is to extract information with a minimum
number of parameters needed for approximating the
data within a given interval, or to forecast it outside,
with a required (or best) accuracy. In other words, the
famous “Occam’s Razor” principle is “Entia non sunt
multiplicanda praeter necessitatem,” or “Entities are not to
be multiplied beyond necessity” (Schaffer, 2015).

Many of the well-known methods were inspired
by the data being used in astro- and geo-informatics.
“Ideally,” as in mathematical analysis, one has to
analyze an infinite continuous function with con-
tinuous derivatives of any order. “Back to reality,”
and the “ideal” is a finite number n of data points
(tk, xk, k = 1..n) with the additional “bonus” of a reg-
ular spacing of the arguments: tk = t0 + δ · k, where
δ is called “time resolution,” “time step,” etc. The reg-
ularity is a necessary condition for the Fourier trans-
form (FT), fast Fourier transform (FFT), and anal-
ysis using the autocorrelation function (ACF) and
cross-correlation function (CCF) (Fisher, 1954; Scheffe,
1959; Anderson, 1958, 2003; Press et al., 2007). A re-
view of the history of the methods was presented by
Wermuth (2011). Combinations of methods are used
in neural networks and machine learning (Haykin,
1999).

The data are often irregularly spaced, having gaps
and irregular argument distributions either in time, or
(if periodic) in the phase domain. Anyway, often meth-
ods have been applied, which contain a sequence of few
simple steps and simplified formulas. Even for test data
with well-defined properties, this may lead to significant
differences between the parameters of the test model
and the values obtained using simplified methods. This
type of partial modeling is often called “de-trending”
(or “trend removal”) and “pre-whitening.” Mikulášek

(2007a) called such type of modeling “Matrix-Phoebia,”
as, mathematically, this is similar to ignoring the nondi-
agonal values of the matrix of normal equations in the
least-squares (LS) method.

Below we present references to the correct (“non-
simplified”) methods and show in which cases they are
significantly better than the common “simplified” ones.
Obviously, “simplified” and “non-simplified” methods
should produce the same corresponding parameters
and approximations, if the conditions used for the
“simplified” methods are satisfied. If not, an improved
method should be used instead of one of the simplified
ones.

The variety of methods reflects the variety of types of
variability. If we could have an infinite number of obser-
vations, theoretically one could get an infinite number
of values of the functions describing the FT. Practically,
in astro- and geo-time series, the data are not only finite
in the number of observations, but also often have gaps
between single observations (e.g., photographs from
Harvard, Sonneberg, Odessa, Moscow, Asiago plate col-
lections and others, CCD photometric surveys [NSVS,
Wozniak et al., 2004; ASAS, Pojmanski, 2002; OGLE,
Paczynski, 1986; Udalski et al., 1997; CRTS, Drake et
al., 2009; MASTER, Lipunov et al., 2010; WASP, Butters
et al., 2010; Street et al., 2003, ZTF; etc.], or space ob-
servations [Hipparcos/Tycho, Høg et al., 2000; KEPLER,
2019; TESS, 2019; WISE, Wright et al., 2010; GAIA,
2019]).

Many of these signals contain different contribu-
tions, for the extraction of which one has to use com-
plicated models, rather than a sequence of simple ones.
Such an approach significantly improves the accuracy,
which allows us not only to determine the model pa-
rameters, but also to more surely estimate their statisti-
cal significance and to avoid wrong detection/discovery
and thus fake interpretations.

The elaboration of advanced algorithms and pro-
grams was inspired by long-term collaboration with
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the “Inter-Longitude Astronomy” (ILA) team. This is a
joint name of a series of smaller temporarily projects
on observation and interpretation of concrete variable
stars or groups of stars. It has no special funds; pro-
fessional and amateur astronomers take part based on
their own resources. This “ILA” project is in some way
similar and complementary to other projects like WET,
CBA, VSOLJ, BRNO, MEDUZA, and currently UkrVO
(Vavilova et al., 2012) and Astroinformatics (Vavilova et
al., 2017), where many of us take part. Previous reviews
on the ILA project were published by Andronov et al.
(2003a, 2014, 2017a).

11.2 STATISTICAL PROPERTIES OF THE
FUNCTIONS OF (CORRELATED)
PARAMETERS OF THE LS FITS

11.2.1 Least-Squares Method: Test
Functions

The most common method for the determination of
the statistically optimal approximation with a corre-
sponding set of parameters is called the least-squares
(LS) method and was proposed about two centuries
ago by Carl Friedrich Gauss (1777–1855). It has been
described in thousands of textbooks and monographs
(e.g., Anderson, 1958, 2003; Forsythe et al., 1977; Press
et al., 2007). LS problems with restrictions were dis-
cussed by Lawson and Hanson (1974). For a more com-
plete description, we present an extended set of formu-
las, which are typically omitted.

Typically, it may be written in a form, with minimiz-
ing the weighted sum of the residuals of the observa-
tional points xk from the calculated values xCk at the
arguments tk , i.e.,

� =
n∑

k=1

(xk − xCk)
2. (11.1)

However, in many cases, one should take into ac-
count the weights of the observations wk = σ 2

0 /σ 2
k

,
where σk is the standard error of the observation xk

and σ0 is called “the unit weight error.” Then we
have

� =
n∑

k=1

wk · (xk − xCk)
2. (11.2)

For the pure Gaussian noise, the random value
U = �/σ 2

0 is distributed according to the χ2 distribu-
tion with (n − m) degrees of freedom, where m is the
number of the independent parameters Cα (α = 1..m)

used for computation of the approximation xC(t).

More complicated, but statistically justified, is the
use of the weight matrix wjk , thus leading to

� =
n∑

kj=1

wkj · (xk − xCk) · (xj − xCj ). (11.3)

For the “correct” evaluation of the matrix wij , one
should use

wij = σ 2
0 μ−1

ij
, (11.4)

where μij is the covariation matrix of the errors of the

observations, μ−1
ij

is an inverse matrix, and σ0 is any
positive constant. Generally, we do not mention the pre-
cise values of μij , but, by setting the coefficients wij , we

automatically assume the matrix μij = σ 2
0 · w−1

ij
.

This expression resembles the metrics in the tensor
analysis and shows a squared “distance” between the
observations and the approximation.

Next improvement contains the filter (weight) func-
tion p(zk, zj ), zk = (tk − t0)/�t , which is dependent
on the times of observations tk , tj and on the “shift”
t0 and “scale” �t , as typically defined in the wavelet
analysis. The general expressions for this case are pre-
sented by Andronov (1997). For practical purposes, the
replacement of wk in Eq. (11.2) by p(zk) · wk may be
recommended, so neglecting possible correlations be-
tween the statistical deviations of the data from the
“true values.”

All these four approaches may be written using a gen-
eralized form of the scalar product of vectors, i.e.,

(�a · �b) =
n∑

kj=1

p(zk, zj ) · wkj · ak · bj . (11.5)

The vectors �a and �b are called “orthogonal” if (�a · �b) = 0.
The “squared” vector may be defined in a usual way:

�a2 = (�a · �a) =
n∑

kj=1

p(zk, zj ) · wkj · ak · aj . (11.6)

Then the test function may be generally written as

� = (�x − �xC)2

=
n∑

kj=1

p(zk, zj ) · wkj · (xk − xCk) · (xj − xCj )

(11.7)
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and one should determine the values of the coefficients
(often called “parameters”) Cα , α = 1..m, of the approx-
imation xC(t,Cα).

In some cases, the coefficients are determined using
the principle of the maximum likelihood. However, un-
der a common assumption of normal probability dis-
tribution of observational errors, the parameters of the
maximum likelihood are exactly at the minimum of the
function �.

11.2.2 Linear Least Squares
The simplest case of the approximation xC(t,Cα) is a
linear combination of so-called basic functions fα(t),
i.e.,

xC(t,Cα) =
m∑

α=1

Cαfα(t). (11.8)

In this case, the minimization of the test function
is reduced to the solution of the following system of
normal equations:

m∑

α=1

AαβCα = Bβ, (11.9)

Cα =
m∑

α=1

A−1
αβ Bβ, (11.10)

where Aαβ = ( �fα · �fβ), Bβ = (�x · �fβ), and A−1
αβ is the

matrix, inverse to Aαβ . The matrix Aαβ = Aβα is sym-
metrical.

If the set of the basic functions is orthogonal (Aαβ =
( �fα · �fβ) = Aααδαβ), the inverse matrix is diagonal

(A−1
αβ = (1/Aαα) · δαβ), and Cα = Bα/Aαα .

The following relations are valid: ((�x − �xc) · �fα) = 0,
((�x − �xc) · �xc) = 0,

((�x − �xc) · (�x − �xc)) = (�x · �x) − (�xc · �xc). (11.11)

Introducing the “reference” vector

�x0 =
m∑

α=1

C0α
�fα, (11.12)

(�x − �xC)2 = (�x − �x0)2 − (�xC − �x0)2. (11.13)

This extended relation is valid for any set of constant
coefficients C0α .

Typically, if it is used, an abbreviated form �x0 = �x1 =
(C11,C11, ...C11) is applied, where C11 is a solution of
the one-parameter fit xc(t) = C11, (so f1(t) = 1), i.e.,

a weighted sample mean of xk . In a general case of
nonorthogonal basic functions, the coefficients Cα are
dependent on m, so it might be recommended to write
a complete form Cmα (as we did for C11). So, generally,
Cmα �= CLα for different number of parameters. How-
ever, after this remark, we will still use Cα as a short
designation of Cmα for current m.

11.2.3 Influence of Deviations of
Coefficients

In the “linear combination” case (Eq. (11.8)), the test
function for any coefficients C̃α = Cα + Dα may be
rewritten as

�(C̃α) = �m +
m∑

α,β=1

Aαβ · (C̃α − Cα) · (C̃β − Cβ),

�m = �(Cα) = �0 −
m∑

α,β=1

Aαβ · Cα · Cβ, (11.14)

�0 = (�x · �x).

Here Dα are some coefficients. Let

xD(t) =
m∑

α=1

Dα · fα(t). (11.15)

Similarly to common designations �x = �O (observed),
�xC = �C (calculated), let �xD = �D (deviation). Then
Eq. (11.14) may be rewritten for the squares (scalar
products) of vectors, and we have

( �O − �C − �D)2

= ( �O − �C)2 + �D2 = �O2 − �C2 + �D2 = �(Cα + Dα)

= �0 −
m∑

α,β=1

Aαβ · Cα · Cβ +
m∑

α,β=1

Aαβ · Dα · Dβ.

(11.16)

A two-dimensional simple geometrical interpreta-
tion of these equations is shown in Fig. 11.1. As the
vectors �C and �O − �C are orthogonal, the squares of their
length are related by the Pythagoras theorem.

For the model (11.8), the test function �(C̃α) is
an m-dimensional paraboloid with a single minimum
at C̃α = Cα . This relatively rare equation may be use-
ful either to see the influence of the rounding of the
determined coefficients on the test function, or to de-
termine “confidence intervals” for the parameters (cf.
Cherepashchuk, 1993).
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FIG. 11.1 Two-dimensional illustration of the
m-dimensional equation (11.16).

11.2.4 Linear Approximation
The mostly used formula is the linear approximation

xC(t) = C1 + C2 · t = (11.17)

= x̄ + C2 · (t − t̄ ), (11.18)

σ 2[xC(t)] = σ 2
x̄

(
1 + (t − t̄ )2

σ 2
t

)

= σ 2
x̄

(
1 + t2 − 2t t̄ + t̄2

σ 2
t

)
, (11.19)

σ 2
wrong[xC(t)] = σ 2[C1] + σ 2[C2] · t2

= σ 2
x̄

(
1 + t̄2 + t2

σ 2
t

)
. (11.20)

Here the mean values x̄ = B1/A11, t̄ = A12/A11, the
variance σ 2

x̄
= σ 2

0 /n, and σwrong = σw is “wrong” (or
“oversimplified”) estimate corresponding to Eq. (11.20).
The mean values are here defined in a general case, not
restricting to the case of equal weights (i.e., assuming
that σk = const). These expressions are valid for any of
the forms of the matrix wij with a definition of the sam-

ple mean value of any function as

σ 2
wrong[xC(t)] =

m∑
α

Rαα · (fα(t))2

=
m∑
α

(fα(t) · σ [Cα])2. (11.21)

The difference in the error estimates using the correct
formula and the incomplete one is shown in Fig. 11.2.

For the uniform distribution of times, starting from
time zero, and large n, the accuracy of the zero point
is σ [C1] = 2σx̄ , and this is exactly twice larger than the
accuracy of the zero point σx̄ in Eq. (11.20).

In Fig. 11.2, the illustrative dependence of x =
�(R − I ) on t = B − V is shown based on Table 2 from
Kim et al. (2004). The best fit line is xc(t). The difference
between the error estimates is due to nonorthogonality
of the set of basic functions fα(tk), which leads to an in-
correct formula. Thus it should be recommended to use
a slightly complicated expression xC(t) = x̄ +C2 · (t − t̄ )

with an error estimate.
Often the data are regular and the first moment is set

to zero, i.e., the time is converted to tk = t0k − t01. Here
t0k are times with an arbitrary zero point in this case
t̄ = (n − 1)/2δ, σt = ((n2 − 1)/12)1/2δ. Thus for any n,
σ [xC(0)] = σ [C]1 = 2σx̄(1 − 1.5/(n + 1))1/2. For large
n, σ [C1] = 2σx̄ . Using a simplified formula (11.21),
one gets σ [xC(t̄)] = √

7σx̄ instead of the correct value
of σx̄ .

Besides the linear regression (Eq. (11.17)) with co-
efficients C2 determined using the LS, more often are
used other lines with different slopes. They all have

FIG. 11.2 The dependence of the smoothing linear function xC(t) and its “±1σ ” error corridors for the
correct equation (11.19) and wrong (simplified) equation (11.20). For the illustration, we have used the
dependence of �(V − R) on the color index (B − V ) (Table 2 from Kim et al. (2004)).
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a cross-point at (t̄ , x̄), so xε = x̄ + bε · (t − t̄ ). Intro-
ducing the second-order moments μxx = �x2/A11 − x̄2,
μtx = B2/A11 − t̄ x̄, μtt = A22/A11 − t̄2, the coefficients
are b1 = C2 (the best fit approximation for xC(t) as a
function of t , i.e., minimizing (�x − �xC)2); b2 = μtx/μxx

for minimizing (�t − �tC)2; b3 = μtx/μxx for minimizing
(�t − �tC)2; b3 = −q + (q2 + 1)1/2, b4 = −q − (q2 + 1)1/2,
q = (μtt − μxx)/(2μtx) are slopes of the “orthogonal”
regression (the coefficient of the main line has the same
sign as μtx). Two-dimensional orthogonal regression is
a kind of principal component analysis (PCA), which is
discussed below. One may also apply PCA to normal-
ized data, with a corresponding slope b5 = sign(μtx) ·
(μxx/μtt )

1/2, which is dependent on the sign of μtx ,
but not on its value.

The correlation coefficient r = μtx/(μxxμtt )
1/2. Its

accuracy σ [r] = (1 − r2)/
√

n − 1, but, for the signifi-
cance test, the value of t = r/σ̃ [r] is used, where σ̃ [r] =√

1 − r2/
√

n − 1. Another test of the “null hypothesis”
is for t = √

n − 3 · ln
√

(1 + r)/(1 − r) (Fisher, 1954).
More details on application of correlation analysis are
discussed by Isobe et al. (1990). The case of unequal
independent statistical errors in both coordinates was re-
viewed by Press et al. (2007).

11.2.5 Linearization
There are also some approximations, the parameters of
which may be more easily estimated by replacing ini-
tial functions with other ones. For example, for a power
dependence model x = a · tb, logx = loga + b · log t , or
x̃ = ã + b · t̃ . Obviously, it is acceptable only for posi-
tive values of all x, t . Similarly, for an often exponential
model x = a · exp(bt), logx = loga + b · t , or, again, x̃ =
ã + b · t . In this case, the expressions become linear, and
the parameters are determined without using slightly
more complicated nonlinear optimization. However,
the coefficients obtained using “linearized” and initial
equations are generally different. They coincide only if
the residuals are zero, containing no observational er-
rors. For small σk � xk , σ [logz(xk)] ≈ σk/xk/ ln z. So it
should be recommended to use the parameters from the
“linearized” model only as initial values for further iter-
ations in a nonlinear model.

11.2.6 Statistical Properties of Functions of
Coefficients

In the general case of nonorthogonal basic functions,
the statistical errors are highly correlated. Thus it is im-
portant to define a complete covariance matrix for the

errors of the coefficients Rαβ = 〈CdαCdβ 〉. Generally,

Rαβ =
m∑

γ ε=1

n∑

i,j,k,L=1

A−1
αγ A−1

εβ p(zi , zj ) · wijp(zk, zL)

· wkLfγ (ti )fε(tk)μjL. (11.22)

This is a statistically correct full version.
Under two assumptions (p(zi, zj ) = 1 and

Eq. (11.4)), this long equation significantly shortens to

Rαβ = σ 2
0 · A−1

αβ . (11.23)

The statistical errors (accuracy) of the coefficients are

σ [Cα] = √
Rαα. (11.24)

The variance (the squared error estimate of σ [G]) of
the general function G(Cα) of coefficients is

σ 2[G] =
m∑

αβ=1

Rαβ · ∂G

∂Cα
· ∂G

∂Cβ
. (11.25)

One may note a common “simplified” (generally
wrong) relation

σ 2[G] =
m∑
α

Rαα ·
(

∂G

∂Cα

)2
(11.26)

=
m∑
α

(
∂G

∂Cα
· σ [Cα]

)2
. (11.27)

This is what Mikulášek (2007a) called the “Matrix-
Phoebia.” Both relations coincide only if the matrix
Rαβ (and so Aαβ) are diagonal. For a simplest compar-
ison, this is like using a2 + b2 for a result of (a + b)2 =
a2 + 2ab + b2.

Particularly, for the smoothing function (Eq. (11.8))
itself,

σ 2[xC(t)] =
m∑

αβ=1

Rαβ · fα(t) · fβ(t), (11.28)

with a “simplified” expression

σ 2[xC(t)] =
m∑
α

Rαα · (fα(t))2 =
m∑
α

·(fα(t) · σ [Cα])2.

(11.29)

This equation is valid only if the matrix Rαβ is diago-
nal, so the matrix of normal equations Aαβ is diagonal.
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FIG. 11.3 Part of the light curve of R Aqr, the symbiotic binary star with a pulsating component. The
observations were taken from the AAVSO international database in the filter V. The approximations xc(t) and
the error corridors xc(t) ± σ [xc(t)] and xc(t) ± 2σ [xc(t)] for different numbers of parameters m correspond to
different criteria for the determination of m.

In other words, the system of basic vectors (vectors of
values of the basic functions) is orthogonal.

The “Matrix-Phoebia” (Mikulášek, 2007a) in using
this equation (11.29) is in replacing the matrix Rαβ by a
diagonal matrix, arbitrarily setting nondiagonal values
to zero.

In the popular electronic tables (Microsoft Excel,
Open/LibreOffice Calc, GNUmeric), there is a possibil-
ity of approximation the data using polynomial and
some linearized approximations. However, no error es-
timates of the parameters and smoothing function are
available, as well as the use of the weights. With the
function LINEST, it is possible to determine parameters
and their estimates for the simplest case wij = const ·δij .
Even the diagonal form wij const · δij and the covaria-
tion matrix Rαβ are not available.

An illustration of the approximation of the real data
is shown in Fig. 11.3. The methods to determine an op-
timal number of parameters is discussed below.

11.2.7 Accuracy of the Derivative and
Moments of Crossings

Similarly, for the derivative of degree q of the smoothing

function x
(q)
C

, f
(q)
α (t) = dqfα(t)/dtq ,

σ 2[x(q)
C

(t)] =
m∑

αβ=1

Rαβ · f (q)
α (t) · f (q)

β (t). (11.30)

For “running approximations” with p(zk, zj ) �=
const, when an approximation consists of mid-points of

the numerous smoothing functions, the expressions are
more complicated, as presented by Andronov (1997).

The moment of crossing tcross of the approximation
of the constant level xcross (e.g., the gamma velocity or
some constant brightness) is determined as the root of
equation xC(tcross) = xcross and has a standard error of

σ [tcross ] = σ [xC(tcross)]
|ẋC(tcross)| , (11.31)

where ẋC(tcross) is the derivative dx/dt at the moment
tcross .

Alternately, Andronov et al. (2008) and Andronov
and Andrych (2014) used the inverse approximation
tc(x), where results may be expressed as tcross =
tc(xcross), so σ [tcross ] = σ [tC(xcross)].

Such method is preferred when the duration of the
ascending or descending branches is much smaller than
the duration of the “outburst” (or “eclipse”). Some al-
gorithms that still use xC(t) approximations are im-
plemented in the software MAVKA (Andrych and An-
dronov, 2019).

11.3 STATISTICALLY OPTIMAL NUMBER OF
PARAMETERS

11.3.1 “Esthetic” (User-Defined)
There are few methods to determine a number of pa-
rameters. Probably the most common one may be
called an “esthetic,” as the user chooses himself, looking
at the approximation and visually estimating its quality.
It is realized in the electronic tables like Microsoft Excel,
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GNUmeric, Libre Office, Open Office, Kingsoft Office,
etc. The default approximation is a polynomial one,
and the user chooses the degree of the polynomial. An
example is shown in Fig. 11.3. A similar approach is re-
alized in the number of principal components used for
filtering multichannel signals (Golyandina et al., 2001).

11.3.2 Analysis of Variance (ANOVA)
The comparison between the values of �m may be done
in a few ways. In many cases, there is a comparison be-
tween the smoothing function obtained with m− q and
m parameters. Very often, the parameter q is set to 1
(e.g., for algebraic polynomials) or 2 (for trigonomet-
rical polynomials). The difference between them may
be scaled easily as B = (�m−q − �m)/�m−q . Assuming
that the residual signal xk − xcm(tk) is a random Gaus-
sian noise with a theoretical covariation matrix μjk , the
random values of �m/σ 2

0 are expected to obey the χ2
n−m

random distribution. As the value of σ0 is unknown,
one uses the sample value of σ0m. The ratio σ 2

0m
/σ 2

0
obeys a “reduced” χ2

n−m random distribution.
Similarly, the value

B = �m−q − �m

�m−q
(11.32)

has the B (Beta) distribution with the parameters q/2
and (n − m)/2. The FAP may be computed in many
programs, also in the electronic tables, as the function
BETADIST.

Traditionally, another related value,

F = n − m

q
· �m−q − �m

�m
= n − m

q
· B

1 − B
, (11.33)

is used, instead of the value B. If the observational er-
rors obey the normal (Gaussian) probability distribu-
tion, the value of F is a random variable corresponding
to the Fisher F distribution with q and n− m degrees of
freedom (Fisher, 1954). It also may be computed using
the electronic tables. Obviously, the estimate of FAP will
be the same, if using either B or F . The inverse relation
is B = qF/(n − m + qF ).

In the particular case q = 1, one may determine the
same value of FAP using the Student T distribution for
the value T = Cm/σ [Cm] for the last coefficient of the
approximation (α = m).

As the system of basic functions is generally not an
orthogonal one, the T distribution is valid only for the
last coefficient Cm. For fast estimates, people use the
“3σ” criterion, i.e., the coefficient is decided to be statis-
tically significant if |T | = |Cm/σ [Cm]| ≥ 3. The FAP may

be computed in the electronic tables using the function
2 · TDIST(|T |, n − m).

In a frequent case f1(t) = 1, the quality of the fit is
measured as the square of the correlation coefficient r

between the observed and calculated data,

S = r2 = 1 − �m

�1
. (11.34)

Here S is the same as B (Eq. (11.32)) with special pa-
rameter q = m − 1.

11.3.3 “Best Accuracy” and Related
Estimates

Another method was proposed by Andronov (1994a)
(see also Andronov, 2003; Andronov and Marsakova,
2006), in which the number of parameters is deter-
mined to get the best accuracy estimate of the chosen
phenomenological parameter, e.g., the r.m.s. accuracy of
the smoothing function σm[xc] at the times of observa-
tions,

σ 2
m[xc] = 1

N

n∑

k=1

σ 2[xc(tk)]

= σ 2
0m

N

n∑

k=1

m∑

αβ=1

A−1
αβ fα(tk)fβ(tk). (11.35)

Only in the case wjk = const ·δjk , this expression is sim-
plified to

σ 2
m[xc] = m

N
σ 2

0m = m

N
· �m

n − m
. (11.36)

For the more general case wjk = wk · δjk , one may in-
troduce a weighted version

σ 2
m[xc] = 1

W

n∑

k=1

wkσ
2[xc(tk)] = m

W
σ 2

0m = m

W
· �m

n − m
,

(11.37)

where W = ∑n
k=1 wk .

Similarly, one may introduce “continuous” versions
of the root mean squared accuracy,

σ 2
mxc = 1

WI

∫ tmax

tmin

wI (t)σ 2[xc(t)]dt, (11.38)

WI =
∫ tmax

tmin

wI (t) dt, (11.39)

where w(t) is a (user-defined) weight function, which is
nonnegative in the interval [tmin, tmax].
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FIG. 11.4 Left: Dependence of r.m.s. accuracy of the smoothing function σmxc at the arguments of
observations on the number of parameters m, for the part of the light curve of R Aqr shown in Fig. 11.3. The
numbers correspond to the values of σmxc. Right: Dependence of LF = lg FAP on m. The vertical bars
correspond to the same three values of m.

Particularly, the function WI (t) may be a constant in
this interval, so making the best r.m.s. accuracy estimate
for the interval. Otherwise, it may be a Dirac’s WI (t) =
δ(t − t̃ ), producing the value for a chosen time t̃ .

Generally, σmxc initially decreases with increasing m,
as �m increases, then increases, as σ0m reaches a “stand-
still,” and the multiplier m becomes more important.
The value of m which corresponds to the minimum of
σmxc, may be recommended to be a statistically opti-
mal one. It may be significantly smaller than the value
determined from the FAP.

An additional algorithm to determine the statisti-
cally optimal value of m is based on the signal-to-
noise ratio (SNR), which is usually defined as SNR =
Psignal/Pnoise, where P is power, which is propor-

tional to corresponding variances: SNR = σ 2
signal/σ

2
noise.

Sometimes, an “amplitude” SNR is used, i.e., SNR =
σsignal/σnoise.

In Fig. 11.4, the dependence of the r.m.s. σmxc on
m is shown. The smallest marked value of m = 5 corre-
sponds to the beginning of the wide minimum, which
resembles a “standstill.” The largest value m = 15 corre-
sponds to the 3σ criterion with a corresponding FAP =
0.0034. The middle value m = 11 corresponds to the
minimal σmxc. Current data are of a good CCD accu-
racy, thus small systematic variations lead to larger op-
timal values of m than in the case of more noisy (e.g.,
visual) observations.

There are many weight (often called “window”)
functions p(z). The classical “finite-length” (if −1 ≤
z ≤ 1, zero outside) ones are the “rectangular” one
p(z) = 1, the Bartlett function p(z) = 1 − |z|, the
“const+cosine” function p(z) = a0 + (1 − a0) cos(πz)

(for a0 = 0.5 and a0 = 0.53836, they are called the Hann
and Hamming filter, respectively), and the infinite
Gaussian p(z) = exp(−z2/2). There are many “hybrid”

window functions, which are often multiplicative or ad-
ditive combinations of other window functions (e.g.,
Prabhu, 2014). Andronov (1997) proposed a simpler
function p(z) = (1 − z2)2, which does not need compu-
tation of exponents or trigonometric functions, and so
is time consuming for computations.

11.4 NONLINEAR LS METHOD AND
DIFFERENTIAL CORRECTIONS

Generally, it is suitable to distinguish between “linear”
and “nonlinear” parameters in the approximation. The
“linear” parameters are those for which the approxima-
tion depends on the corresponding parameter linearly
(as in Eq. (11.8)). Instead, “nonlinear” parameters are
included in the “nonlinear” basic functions fα .

The most common example is a sine approximation

xC [t] = C1 + C2 · cos(C4 · (t − t0))

+ C3 · sin(C4 · (t − t0)), (11.40)

where C1, C2, C3 are “linear” parameters and C4 =
2π/P = 2πf is a “nonlinear” one. Here P = 2π/C4 =
1/f is the period and f is frequency. The parameter C4
is “nonlinear,” as the value of the smoothing function
xC(t) changes with C4 nonlinearly. The parameter t0
may be arbitrary. It influences the coefficients C2 and
C3, but not the sum (Eq. (11.40)).

To determine its value, one may compute a sequence
of values of the test function for a set of “nonlinear”
parameters, determining the “linear” parameters using
the LS described above. Then the set corresponding to
the minimum is determined, which corresponds to the
minimum of the test function �. Then we either de-
crease the step for the grid of parameters and determine
the value of C4, or use iterations to determine a more
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precise position of the minimum. The parameter t0 is
often set to zero, or to the beginning of observations.
However, for faster convergence of the iterations, it is
recommended to set it to a sample mean.

For this purpose, there are many methods; among
them the most popular are (e.g., Press et al., 2007):

– Gauss–Newton algorithm,
– gradient descent algorithm,
– Levenberg–Marquardt algorithm,
– conjugate gradients algorithm,
– simplex method,
– coordinate descent,
– Monte Carlo (random arguments).

All these methods achieve more accurate determina-
tion of the parameters. But, to estimate statistical prop-
erties, the method of differential corrections (Gauss–
Newton algorithm) should be finally used to allow esti-
mating the matrix Rαβ and further estimating the accu-
racy of coefficients and approximation itself. The main
idea is to calculate the corrections to the nonlinear co-
efficients in such a way that the test function � should
reach its deeper minimum. Let us enumerate the non-
linear parameters from m + 1 to L = m + q. Then the LS
method is applied twice, separately for m initial equa-
tions with some input values of Cm+1..CL, and later to
the system of L equations for the residuals, i.e.,

L∑

α=1

Aαβ · �Cα = �Bβ, (11.41)

�Bβ = ((�x − �xC) · �fβ). (11.42)

Here the basic functions fβ(t) = ∂xC(t)/∂Cβ . For β =
1..m, they contain only “nonlinear” coefficients. How-
ever, additional basic functions with β = m + 1..L con-
tain both “linear” and “nonlinear” coefficients:

fβ(t) =
m∑

γ=1

Cγ · ∂fγ (t)

∂Cβ
. (11.43)

One may note that the inner part of the matrix Aαβ ,
α,β = 1..m, is the same for both systems (of m and L

equations), and �Bβ = 0 (within rounding errors) for
β = 1..m.

The next step is to add differential corrections �Cα

to the input values of Cα and replace them: Cα + �Cα .
These iterations are repeated while all |�Cα | will de-
crease below some limiting accuracy ε, or the number
of iterations will not exceed some limiting value (e.g.,
30). If the initial “guess” of the parameters is good, only
few iterations are needed to reach the “ε” limit. If not,

the Levenberg–Marquardt method is used. It is based on
adding to the diagonal elements of the matrix Aαβ val-
ues of λ > 0 (Levenberg, 1944) or λ · Aαα (Marquardt,
1963). That is, only the diagonal elements of the matrix
Aαα are multiplied by a factor of (1+λ), so the modified
LS equations

L∑
α=1

(Aαβ + λ · δαβ) · �Cα = �Bβ (11.44)

are solved (Marquardt, 1963). After moving of the itera-
tions from the “risk zone” with large λ, its value should
be decreased to a final value of zero to allow correct
values of the matrices Aαβ and Rαβ . These methods
are similar to the “Tikhonov regularization” (Tikhonov,
1963). A very important point is to choose a correct
initial point, as it may lead to, instead of a global mini-
mum, a local minimum, or even a maximum. If the ini-
tial values are close to the solution, the iterations con-
verge rapidly. Sometimes, after an iteration, the value
of the test function may become larger. In this case,
one may use smaller steps and move to a closer point
Cα + λstep · �Cα , 0 < λstep ≤ 1. This will slow down
convergence of the iterations, but may make the inter-
val of convergence wider. In a simpler (but generally
slower) method of “steepest descent,” no inverse matrix
is needed, and one may just estimate �Cα = �Bα/Aαα .
Asymptotically, for large λ � Aαα for all α, the direction
of the vector of differential corrections changes from
that for “differential corrections” to that of the “steep-
est descent” with λstep ≈ 1/(1 + λ) � 1.

The Monte Carlo method needs ranges for all avail-
able parameters instead of the initial point of iterations.
Its realization is the easiest in the computer program,
but needs too many test samples NC to get accuracy δC :

NC ≈ δ
−q/2
C

, where q is the number of (naturally, “non-
linear”) parameters, for which the Monte Carlo search
is applied (Andronov and Tkachenko, 2013).

11.5 NONUNIQUE MINIMUM OF THE TEST
FUNCTION

Sometimes the data do not allow to determine all
physical parameters needed, as the information is not
sufficient. For example, a visible magnitude m is re-
lated to the absolute magnitude M and the distance
r in parsec: m = M − 5 + 5 · lg r . The observational
parameter is m, and, from one equation, it is not
possible to get two unknown parameters M and r .
However, to determine the distance r from other mea-
surements, e.g., parallax from ground-based or space
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(HIPPARCOS, GAIA) observatories, one may determine
an absolute magnitude separately. Similarly, the half
duration of the eclipse is related to radii of both stars
(assumed to be spherically symmetrical), the distance
between them, and the inclination i (Shul’Berg, 1971;
Andronov and Tkachenko, 2013). Thus one may deter-
mine less phenomenological parameters than the phys-
ical ones. Or, for the same values of the phenomeno-
logical parameters, one may get a region of physical
parameters, which are thus poorly defined separately.

Another problem may appear if there are few min-
ima of the test function for different sets of parameters.
Sometimes, these minima are of comparable depth, and
occasionally the deepest minimum may correspond to a
wrong set. This is why the results from discovery papers
should be checked and corrected with better accuracy,
using additional further observations. These simple ex-
amples show necessity of complementary methods.

11.5.1 Bootstrap Method
An alternate method for determination of the accuracy
of the model parameters is the so-called “bootstrap”
method (Efron, 1979; Efron and Tibshirani, 1993; Shao
and Tu, 1996). The parameters are determined for the
initial data, and used as a solution. Then new datasets
are generated using random numbers j = int(random ·
n) + 1, where “random” is a pseudorandom number,
which is uniformly distributed in a range (0,1). So some
initial data points are missing, and other ones may be
used one or a few times.

Andrych et al. (2020) and Andronov and Kulynska
(2020) discussed statistical properties of the approxi-
mations of the “bootstrap-generated” data sets in more
detail.

Generally, the sample distribution may be asymmet-
rical. The sample mean of a given parameter may differ
from the initial value, so one may use, as an accuracy es-
timate, the r.m.s. deviation of the generated value from
the initial one. Sometimes, instead of single σ , there
are asymmetrical positive (σ+) and negative (σ−) errors
corresponding to, e.g., the 95% confidence interval.

This challenges an usual assumption on Gaussian
distribution of statistical errors. Moreover, this type of
the confidence interval is not consistent with the defini-
tion of weights. For the normal distribution, this inter-
val is 1.96 times larger than the standard error. Approx-
imately, for a sample value, one may just divide by this
factor. This factor is larger for the Student distribution
for a smaller number of degrees of freedom. Another
disadvantage of the bootstrap method is that, due to
a decrease of the number of different arguments, and
hence much larger gaps, the “best” approximation may

be unrealistically shifted as compared to that for the real
sample.

11.5.2 Determination of Times of
Minima/Maxima (ToM)

There is a special kind of analysis of the period and its
possible changes, based on the “times of minima/max-
ima” (ToM) (AAVSO) or the “moments of character-
istic events” (Tsesevich, 1973; Dumont et al., 1978;
Andronov, 1988). Then, from many “near-extremum”
observations, the only information that is extracted is
the moment of time, which corresponds to a minimum
or maximum of the approximation. Some of the meth-
ods were discussed by Andronov (2005).

For the moment of extremum te (maximum or min-
imum, what is commonly used to compile interna-
tional databases) is determined as the root of equation
ẋC(te) = 0 and has a standard error of

σ [te] = σ [ẋC(te)]
|ẍC(te)| . (11.45)

For example, for a simplest parabolic fit

xC [t] = C1 + C2 · (t − t0) + C3 · (t − t0)2, (11.46)

te = t0 − C2/(2C3) and

σ 2[te] = R22C2
3 − 2R23C2C3 + R33C2

2

4C4
3

. (11.47)

For the polynomial of arbitrary order s = m − 1

xC [t] = C1 + C2 · (t − t0) + C3 · (t − t0)2 + ...

+ Cm · (t − t0)m−1, (11.48)

the position of the extremum is determined numerically
by solving the equation ẋC [te] = 0 using the Newton–
Raphson method of iterations te := te + δte, where δte =
−ẋC [te]/ẍC [te], until |δte| ≤ ε, where ε may be set to the
desired accuracy. In practice, this may be a computer ac-
curacy, when te + δte − te is equal to zero because of the
rounding errors. The starting point is determined on a
regular grid within the given data interval. The type of
the extremum corresponds to that from the parabolic
approximation (s = 2).

The statistical error is estimated similarly to
Eq. (11.31):

σ [te] = σ [ẋC(te)]
|ẍC(te)| . (11.49)

As the polynomials are most common functions
used for approximations (e.g., in the electronic tables),
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FIG. 11.5 Approximations of the eclipse of the binary
system GSC 3692-00624 = 2MASS J01560160+5744488
using a short data sample published by Devlen (2015). Left:
Algebraic polynomial of degree m − 1 = 6. Right:
Trigonometric polynomial of degree (m − 1)/2 = 3. The ±1σ

and ±2σ “error corridors” are shown.

they were often used for the ToM determination. For
example, the catalogue of 6509 extrema of semiregu-
lar variables (Chinarova and Andronov, 2000) was used
using this method. The number of the parameters m =
s +1 was determined separately for each interval of data
near extremum. The same algorithm was implemented
in other software (Breus, 2007; Andrych et al., 2015).
In practice, we test orders s up to eight only. In the
popular commercial software PERANSO (Paunzen and
Vanmunster, 2016), the degree of the polynomial s is
user-defined, so the “esthetic” method is applied.

In Fig. 11.5, the approximations of the short obser-
vational run near the minimum are shown, using the
same number of parameters m = 7 for the sixth-order al-
gebraic polynomial and the third-order trigonometrical
polynomial. Remarkable coincidence of both approxi-
mations in the interval of observations is observed, but
a drastic difference outside the interval. These “com-
mon” approximations show a bad approximation at the
bottom of eclipse, where a statistical error of one point
“makes” the minimum “split.”

To avoid this physically unreal behavior, we have
proposed other phenomenological approximations,
which were applied to the same data by Andrych et al.
(2017). They are shortly described below.

For theoretically symmetrical signals (e.g., eclipses),
it is natural to use symmetrical functions, e.g., polyno-
mials of order s = 2(m − 1), i.e.,

xC [t] = C1 + C2 · (t − te)
2 + C3 · (t − te)

4 + ...

+ Cm · (t − t0)2(m−1). (11.50)

Here te = Cm+1 = CL is the symmetry point which cor-
responds to the extremum and is determined numer-

ically using the Newton–Raphson method. Obviously,
for m = 3, an either “ordinary” or “symmetrical” poly-
nomial is a parabola, and there is a difference in the
form of two functions, but not their values or proper-
ties. For polynomials of higher orders, the absence of
terms with odd power indices keeps the function sym-
metrical.

Even for a “complete” polynomial with both odd
and even power indices, the form

xC [t] = C1 + C2 · (t − te)
2 + C3 · (t − te)

3 + ...

+ Cm · (t − t0)m (11.51)

is preferable, as te is the moment of extremum, even if
there may be up to (m − 1) real roots of the equation
ẋC [te] = 0.

Although polynomials are commonly used for ap-
proximations, they are not the best functions because of
the Gibbs effect and apparent waves at the approxima-
tion. Smaller amplitudes of waves show cubic splines
(Andronov, 1987). Marsakova and Andronov (1996)
have proposed a spline with varying degree and subin-
tervals – the “asymptotic parabola,” which consists of
two straight lines connected with a parabola. This is ef-
fective for asymmetric extrema, e.g., in the light curves
of pulsating variables of the types RR Lyrae, δ Cephei,
and Mira et al.

It is suitable to write the approximation in the form

xC [t] = C1 + C2 · G((t − C3),C4, ...,Cmp) (11.52)

to determine two “linear” parameters C1, C2 and L − 2
“nonlinear” parameters C3, ...,CL. If choosing the func-
tions G in such a way that G = 0 at t = C3, the expla-
nation of the “linear” parameters is simple: C1 is the
smoothed signal value at the extremum. With an ad-
ditional condition G → 1 far away from the extremum,
C2 is equal to the amplitude, i.e., the difference between
the “extremal” and “quiet” values of the approximation.

If the “quiet” part is present, one may use another
definition, xC [t] = C̃1 + C̃2 · G̃((t − C3),C4, ...,Cmp),
with obvious relations between the coefficients C̃1 =
C1 − C2, C̃2 = −C2 with the same values of other pa-
rameters.

For the typical near-extremum observations, there is
no “quiet” part, so C2 may be unrealistically large, even
formally “infinite.”

In this case, one should use a “restricted” model
– e.g. setting at least one of the “nonlinear” param-
eters to some limiting value and recomputing the fit
for a smaller number of parameters L. In some cases,
the “inner interval” is a wide as the observations. Then
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the model simplifies to a “singular interval” one, and
may be an ordinary parabola, as, e.g. in the method
of “asymptotic parabola” (Andrych et al., 2015) and
“parabolic spline” (Andrych et al., 2020).

In some cases, we can just use power series (some-
times even noninteger power indices; e.g., Andronov et
al., 2017b).

For the “global” approximation with a single analyt-
ical function, Andronov (2005) proposed

G̃((t − C3),C4,C5)

= 2

exp(C4 · (t − C3)) + exp(−C5 · (t − C3))
.

(11.53)

This an extension of the classical hyperbolic secant func-
tion sech(z) = 2/(ez + e−z) for the case of asymmetri-
cal ascending and descending branches. The connection
to physics of the process is that τ− = 1/C4 and τ+ =
1/C5 are characteristic times of exponential rise/decay
at the beginning/end. The accuracy estimate is σ [τ−] =
σ [C4]/C2

4 and, similarly, σ [τ+] = σ [C5]/C2
5 . The posi-

tion of the extremum is shifted; we now have

te = C3 + ln(C5/C4)/(C4 + C5). (11.54)

The accuracy of this function of three coefficients C3,
C4, and C5 is estimated using Eq. (11.25).

The following analytical approximation, which is
similar to a probability distribution, was proposed by
Bódi et al. (2016):

G̃((t − C3),C4,C5)

= exp(− ln 2 · C5 · (ln(C4 · (t − C3) + 1))2). (11.55)

These two functions are time consuming, because of nu-
merous computations of exponents and logarithms dur-
ing a “brute force” determination of three parameters
before using the differential corrections. Also, during
the iterations, the values should be checked for being in
a reasonable interval. For example, for the latter func-
tion, C4 → 0 for an exactly symmetrical signal, which
causes C2 ·C5 → ∞. In this case, the function should be
changed to a symmetrical polynomial, or to a Gaussian

G̃((t − C3),C4) = exp(−C4 · (t − C3)2). (11.56)

This method is also widely applied, as some software
uses it to fit spectral lines.

However, for symmetric signals similar to the eclipses
of the eclipsing binaries, it is useless, as the eclipses are

of finite length. Moreover, the eclipse duration is an op-
tional parameter to be listed in the “General Catalogue
of Variable Stars” (Samus et al., 2017). Thus one should
use approximations of a finite length. Andronov (2012)
proposed a “New Algol Variable” (NAV) function

G̃((t − C3),C4) = (1 − (|t − C3|/C4)C5)1.5, (11.57)

where the parameter C5 determines the “flatness” of the
shape near the mid-eclipse, i.e., C5 = 1 corresponds to
a lower physical limit (when the stars have the same
size, and the total eclipse is very short as compared to
the eclipse duration); C5 = 2 corresponds to the “classi-
cal” mathematical function, which has a nonzero sec-
ond derivative at the extremum. With increasing C5,
the shape becomes flatter, and very large values may
correspond to short ascending (or descending) branch,
which is typical for exoplanet transits. The power 1.5
asymptotically describes the shape of the eclipse of
spherical (or even ellipsoidal) stars close to the outer
contact. Added to a trigonometrical polynomial, the
NAV function is effective not only for the Algols, but
also for EB and EW – eclipsing systems with more
smooth variations than in EA (Tkachenko et al., 2016).

Mikulášek (2015) introduced few functions improv-
ing the Gaussian. At first, the simple parabola in the
argument was replaced by a hyperbolic cosine, i.e.,

G̃((t − C3),C4) = exp(1 − cosh((t − C3)/C4). (11.58)

This function tends to zero faster than a Gaussian, but
still has a parabolic shape close to mid-eclipse. Thus
also a “noninteger” power shape was introduced, i.e.,

G̃((t − C3),C4)

= 1 − (1 − exp(1 − cosh((t − C3)/C4)))C5 . (11.59)

Andrych et al. (2017) introduced a series of sym-
metrical functions, where the interval of observations
is split into three subintervals (physically, the begin-
ning/ending and middle branches are described using
different formulas). They called these functions “wall-
supported” (WS) ones. The WS parabola seems the best
for describing the exoplanet transits. The WS line is
good for total eclipses of stars of comparable sizes.
WS “asymptotic parabola” is good for the intermedi-
ate cases. For an extreme case of very wide interval
beginning close to the previous extremum and ending
close to the next one, we have introduced the quadratic
spline. In all these functions, the positions of the points
splitting the interval are “nonlinear” parameters, which
are determined to get the best fit.
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For wider intervals, which contain completely the
ascending and descending branches, Andronov et al.
(2017b) tested almost a half hundred modifications of
the shapes (“patterns”).

Obviously, a wide variety of functions needs numer-
ical criteria to choose the best one. Currently, all these
21 methods are implemented in the software MAVKA,
which has an option for automatic determination of the
method with best accuracy estimate (Andrych and An-
dronov, 2019) from a list of chosen function(s).

11.6 PERIODOGRAM ANALYSIS:
PARAMETRIC VERSUS
NONPARAMETRIC METHODS

11.6.1 From Time to Phase
The truly periodic signal satisfies the condition x(t +
k · P) = x(t) for any integer k, and P is the period. Ac-
cording to this definition, the values 2P , 3P , etc., are
also “periods.” So it is usually adopted to use the mini-
mal positive value as the “period.”

In some cases, the physical period is 2P , e.g., for
eclipsing binary stars of the EW-type or for the ellipti-
cal variables. Their light curves have two similar waves,
which are mirror (reflection) symmetrical in respect to
the primary (deeper) or secondary minimum. The dif-
ference between these “reflected” parts is usually within
observational errors. In this case, the period P is called
the “photometric” period, or the “formal” period, while
2P is called the “true,” “physical,” or (for binary stars)
the “orbital” period.

The main idea for the periodic functions is to “pack”
all the data into a single interval. Typically, the time
is thus shifted by an integer number of cycles, so an
age may be introduced, τP = t − T0 − P · E, where T0
is called the initial epoch and E = INT((t − T0)/P ) is
the cycle number. Here the function INT is defined as
the largest integer which does not exceed unity. For ex-
ample, int(−2.7) = −3. In this case, E = −3, φ = +0.3.
In some computer languages, the value of this function
is set to −2, so a correction is needed. This should be
checked in concrete programming environments.

The “age” is typical for an everyday life situation,
e.g., time measured in 12- or 24-hour format (or a dec-
imal part of the Julian Day). It is measured in units of
time. To scale the signals with different periods, the di-
mensionless “phase” φ = τP /P . So t = T0 + P · E + τP ,
= T0 + P · (E + φ).

The astronomical definition of the phase is different
from an usual definition in physics and mathematics
ϕ = 2πφ, i.e., in radians.

So 0 ≤ τP < P , 0 ≤ φ < 1. However, this range may
be extended for some methods and for better illustra-
tion. For example, the phase φ = 0.99 is the same as
φ = −0.01. In Fig. 11.6, the computed nonsinusoidal
signal is shown for a random distribution of time. The
points should be shifted by an integer number of peri-
ods to “be moved” to the main interval.

11.6.2 “Parametric” (“Point-Curve”)
Methods

The periodogram analysis is based on estimate of the
“quality” of the phase light curve by some parameter,
which is called “the test function.” This test function is
computed for different trial periods P or, alternately,
frequencies f = 1/P . Traditionally, the periodogram
analysis is divided into two large groups, which are
called parametric (or “point-curve”) or nonparametric
(“point-point”). In the first group, the phase curve is
compared to some approximation (smoothing curve).
The test functions are used similarly to � in Eq. (11.1),
so the position of its minimum (as a function of the
period P , rarely also of the initial epoch T0) is to be
found. However, in many cases, the amplitude of the
signal is small as compared to the noise, so the relative
amplitude of the test function is not too large, so it is
far enough from the zero level. So it may be suitable to
introduce the test function

S(f ) = r2 = 1 − �m+q+1/�q+1. (11.60)

Typically, the value q = 0 is used, i.e., the approxima-
tion by a constant. However, this definition of the peri-
odogram was used by Andronov and Baklanov (2004)
for the periodogram analysis with a trend approximated
by the polynomial of order q.

The trigonometric polynomial is most often used
for the periodogram analysis. However, other peri-
odic functions may be used, e.g., “piecewise constant”
splines (Jurkevich, 1971). This method was improved
by Stellingwerf (1978), who partially removed the de-
pendence of the test function on the initial epoch. This
algorithm is called “phase dispersion minimization”
(PDM) and is often used. The test functions are depen-
dent on the number of intervals (bins) m, which is a
free parameter. We recommend to use at least m ≥ 3
for expected near-sinusoidal variability and m ≥ 5 for
double-peaked curves of EW-type stars. However, for
light curves with sharp parts (eclipsing binaries, RR
Lyrae-type stars), the number m should be increased
so that at least two subintervals cover such sharp parts.
Generally, according to the Sturges (1926) rule, the
number of bins should be m ≈ 1+3.32 · lgn ≈ 1+ log2 n.
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FIG. 11.6 Top: The simulated truly periodic signal with a period P = 20 with a highly asymmetrical shape.
Such shape is similar to periodic flashes (or, in astronomy, to RR Lyr-type stars). The points are shifted by
an integer number of periods P inside the preferred interval. Left: Trigonometric polynomial approximations
of orders s = 1,2,4,8 for the true period. Right: Phase curves for trial periods, which deviate from the true
period, with a cosine (TP1) approximation. Points are shown in different colors, to see that different
“seasons” show good curves, but they are shifted between each other. The ±1σ and ±2σ “error corridors”
are shown. The approximations were made using MCV software (Andronov and Baklanov, 2004).
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Andronov (1987) proposed to use more smooth cubic
splines, and, additionally, to remove dependence on T0
either by smoothing the cubic splines, or to determine
the best phase shift corresponding to a minimum of the
test function.

11.6.3 “Nonparametric” (“Point-Point”)
Methods

In another group of methods, which do not assume the
basic functions, the distance between the points (dif-
ferent in different methods) is taken into account. The
most famous method was published by Lafler and Kin-
man (1965), typically abbreviated to LK.

The test function is

� = C

n∑

k=1

θ(�xk,�φk), (11.61)

where �xk = xk − xk−1, �φk = φk−1, and, “formally,”
x0 = xn, φ0 = φn − 1. Its minimum corresponds to
the best period. Here the data are sorted according
to the phases φk for each trial period. The summand
θ(�xk,�φk) is some kind of “distance” between the two
points, which are subsequent in phase. The scaling pa-
rameter C > 0 is arbitrary. It may be set, e.g., to unity, or
to make the mathematical expectation for a pure noise
to 1, 2, or any positive value.

In the original LK method, θ(�x,�φ) = (�x)2, and
the scaling factor C = σ−2

x /n is inversely proportional
to the variance of the data σ 2

x .
There were numerous modifications of the method,

e.g., θ = |�x| (see the appendix by Deeming to Bopp
et al., 1970), |�x|γ (Pelt, 1975), (�x)2/((�φ)2 + ε2),
|�x|/(�φ + ε) (Renson, 1978),

√
((�x)/ε)2 + (�φ)2

(Dworetsky, 1983), etc.
The comparative study of these methods was pre-

sented by Andronov and Chinarova (1997) with recom-
mendations on values of ε.

Pelt (1975) proposed a more general relation, taking
into account the distance measure not between the pairs
of subsequent in phase points, but with neighbors in
some interval of phases, i.e.,

� = C

n∑

k=1

k−1∑

j=1

(xk − xj )2 · θ̃ (|φk − φj |), (11.62)

where the simplest weight function θ̃ = 1 if |φk − φj | ≤
�φmax/2 << 1/2.

The full width of this interval �φmax is an additional
free parameter. If it is narrow, the fluctuations of the pe-
riodogram are large.

There is no single best method among these; oth-
erwise the others could “go to history.” Some modifi-
cations called “string/rope length methods” were dis-
cussed by Clarke (2002). In practice, the LK method is
the most popular one among “point-point” the ones,
and it has been implemented in many computer pro-
grams, e.g., VSCalc (Breus, 2007), Peranso (Paunzen
and Vanmunster, 2016), etc. According to the ADS, this
paper has been cited 652 times already in 2019.

Periodograms are discontinuous, so it is often possi-
ble to get a local minimum, which is shifted from the
“true” position.

The periodograms have the deepest minimum at
the main period, whereas there are minima at 2P , 3P ,
kP , etc. The depth gradually decreases with the multi-
plier k, as the same number of points are distributed less
densely at the main wave, so the systematic differences
between the points become relatively large. The mathe-
matical expectation of the normalized function � for a
pure noise (no signal) in the LK method is 2.

For a better apparent contrast of the minimum of the
test function � to the “noisy continuum” at the peri-
odogram, it should be recommended to use lg� instead
of � itself.

This behavior is opposite to that of the one based at
the sinusoidal approximation, where the possible peaks
appear at multiple frequencies, rather than periods. The
width of the peaks is nearly constant.

The periodogram for the two-point distance is dis-
continuous. So the minimal value of the test function
on a grid of frequencies or period s may be shifted from
an expected one, even if the signal is an accurate peri-
odic function without noise.

The recommended frequency step is �f = �φ/(tn −
t1), where �φ is the change of the phase difference be-
tween the first and the last observations.

For the sinusoidal signals, a value of �φ between
0.04 and 0.06 is recommended, but not worse than 0.1.
For the trigonometric polynomial of order s, the rec-
ommendation is �f = �φ/(tn − t1)/s. In the FT (see
next section), �φ = 1 − 1/n. But there the period is
exactly fixed to the duration of the observations nδ =
(tn − t1)/(n − 1) · n = jP . The periodograms of different
kind are shown in Fig. 11.7.

11.7 WHAT IS THE “ORTHODOX” FOURIER
TRANSFORM FOR DISCRETE DATA?

The FT is one of the most popular methods for data
analysis, as well as for solving tasks in mathematical
physics and other directions of mathematics.
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FIG. 11.7 Top: The simulated truly periodic signal with a period P = 20 with a highly asymmetrical shape.
Such a shape is similar to periodic flashes (or, in astronomy, to RR Lyr-type stars). Periodograms for
“parametric” or “nonparametric” are computed using the TP, LK, and D1 methods and are represented as
functions of f = 1/P , P , and lgP .
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A Google search shows almost 38 million links to
publications for the “Fourier Transform,” among them
thousands of books containing the description (e.g.,
Anderson, 1958; Bendat and Piersol, 2010; Press et al.,
2007). Excellent reviews on FT and the discrete Fourier
transform (DFT) are posted on Wikipedia. There are
many versions with different designations.

The original work was published by Fourier (1822)
almost two centuries ago. One of the classical mono-
graphs dedicated solely to FT was published by Tolstov
(2012).

The classical FT is typically defined as

x̂(f ) =
∫ +∞
−∞

x(t) · e−i2πf t dt, (11.63)

with an inverse transform

x(t) =
∫ +∞
−∞

x̂(f ) · ei2πf t df. (11.64)

Here t is time and f = 1/P is frequency, P is period, and
i2 = −1. As the integrals should be limited, the integral
of the function |x(t)| should exist.

The FT is a very powerful tool used in numerous
analytical studies, e.g., mathematical physics, statistics,
etc. In reality, it has strong limitations due to the ab-
sence of infinite information from the observed signals.
The most common adaptation of the method to dis-
crete data may be called DFT, which also has some ver-
sions.

It is assumed that the signal is defined at a set of dis-
crete points tk = t0 +kδ, k = 0..n1, where n1 = n−1. The
inverse FT becomes a sum:

xc(t) = C1 +
s∑

j=1

(C2j cos(2πjf t) + C2j+1 sin(2πjf t))

= C1 +
s∑

j=1

Rj · cos(2πjf (t − T0j )), (11.65)

which is called the “trigonometrical polynomial” of or-
der s.

The relations are listed as

C2j = Rj · cos(2πjf T0j ),

C2j+1 = Rj · sin(2πjf T0j ),

Rj =
√

C2
2j

+ C2
2j+1,

T0j = atan2(C2j+1,C2j /(2π) + k) · P/j, (11.66)

where Rj is called “semiamplitude,” i.e., the difference
between the maximum deviation of the wave from its
mean value, so 2 · Rj is a full amplitude between the
maximum and minimum of the corresponding wave,
and T0j is called the initial epoch (moment of time,
which corresponds to the maximum of the wave).

One may choose any integer value of k in this equa-
tion – e.g., if we say that the Sun is highest close to
noon, “noon” is the initial epoch. Of which day? Of
each. Many authors use the earliest initial epoch occur-
ring during the observations. However, the best results
for the matrix of normal equations will be obtained
choosing T0j closest to the sample (weighted) mean
value of times of the observations.

It is also important to note that the brightness in
astronomy is measured in “stellar magnitudes,” so the
minimum of brightness corresponds to a minimum of
the stellar magnitude. This should be clearly written in
the papers to avoid misinterpretation by other authors.

Terminologically, the wave j is called the (j − 1)-th
harmonic of the main period (j = 1). However, some
authors use the j -th wave as the j -th harmonic. It is
some type of scientific slang, as j = 1 is a main wave,
and not its harmonic. This also could lead to misinter-
pretation.

Here it is suggested that the signal repeats from −∞
to +∞ with a period P = nδ/j . Obviously, it is not pos-
sible to determine more parameters than there are ob-
servations, thus the number of frequencies is limited to
smax = int(n/2). The set of the basic functions is f1 = 1,
f2j = cos(2πjf t), f2j+1 = sin(2πjf t).

The set of frequencies for the classical FT is discrete
(fj = 2πj/n), and the coefficients may be easily deter-
mined as

C1 = 1

n

n∑

k=1

xk,

C2j = 2

n

n∑
k=1

xk cos(2πkj/n), (11.67)

C2j+1 = 2

n

n∑

k=1

xk sin(2πkj/n).

If n is even, then jmax = s = n/2, and then the coeffi-
cient Cn should be twice smaller than in the equation
above, and Cn+1 is not used, or is set to zero.

An example of inadequate use of the FT is shown in
Fig. 11.8. The sums Eq. (11.65) converge to a function,
which has a discontinuity. So the point at the border is
a mean from the values left and right from this point.
There are apparent waves (the Gibbs phenomenon) of
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FIG. 11.8 Approximations of a cosine function “observed”
during 0.75P by Fourier sums (trigonometrical polynomials).
For the discrete Fourier transform (DFT), the “period” is
assigned to the duration of the data nδ, and not to the true
period. The Fourier sums smooth jumps, the slope of which
increases with increasing degree of the trigonometrical
polynomial s.

no physical meaning, and an abrupt switch between the
levels of discontinuous function.

This problem does not arise, if to determine a sta-
tistically optimal period from the data, not from the
duration of observations.

For irregularly spaced data, the statistically correct
decision is to use LS. However, there are some meth-
ods, the authors of which still call “Fourier transform,”
even though the conditions are not satisfied.

The simplest formula was used by Deeming (1975).
He just used

C1 = x̄,

C2 = 2

n

n∑

k=1

xk cos(2πf tk) = C(f ), (11.68)

C3 = 2

n

n∑

k=1

xk sin(2πf tk) = S(f )

as the approximation

xC(t) = C1 + C2 cos(2πf t) + C3 sin(2πf t). (11.69)

This coincides with the Fourier coefficients only un-
der conditions of orthogonality of the basic functions,
which is generally not fulfilled. Moreover, the coeffi-
cients C2 and C3 are dependent on the zero point, so
later it was recommended to use (xk − x̄) instead of xk

in the corresponding equations.
Lomb (1976) proposed a partial improvement, mak-

ing a model as in equation (11.69), but fixing C1 = x̄,
and using C2 and C3 from an LS approximation with
m = 2 parameters. Scargle (1982) got the same peri-
odogram, but shifting the initial phase for each trial
frequency to make orthogonal the basic functions �f2
and �f3. He also studied statistical properties of such a
periodogram if the signal is pure noise and the accuracy
of the data is known. The method was further referred
to as the “Lomb–Scargle” method and is the most pop-
ular one, having 3851 citations in the papers listed in
the ADS in 2019.

The problem in this method is neglecting nonorthog-
onality of the basic function �f1 with two others. It is
not so important if the observations cover the phase
more or less homogeneously. However, many stars have
periods, which are ∼ 2 times longer than the typical du-
ration of observations during the night.

In Fig. 11.9, there are examples of approximation
of short runs using this most popular method of pe-
riod search. For the near-extremum symmetrical data,
the apparent period is equal to the duration of the data
(in this sample, 0.5P ). For the descending branch, if
we wish to remove the linear trend, the periodogram
shows a peak at 0.36P . At the same time, the complete
three-parameter LS fit (Andronov, 1994a) produces an
exact approximation, so a correct value of the period,

FIG. 11.9 Approximations of a sine function “observed” during 0.5P by the Lomb–Scargle method. Left:
Approximation using the first half of the period. Because the mean value is shifted, the formal period in this
method is 0.5P , and the approximation has two apparent waves during one true period. Right: The middle
half and the linear trend. The detrended data show an apparent period of 0.36P .
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amplitude, phase, and a zero point. The “sparing” of
computer time was important in 1976, but now the
computers are fast enough to determine parameters of
complete models.

From the non-LS methods, there are “CLEAN”
(Roberts et al., 1987) and “CLEANEST” (Foster, 1995).
The similarity law in spectral estimation of time series
was analyzed by Terebizh (1998).

11.7.1 LS-Based DFT
For a connection between the continuous and discrete
FTs, one may refer to Wehlau and Leung (1964), where
the discrete signal may be written as a multiplication of
functions describing different types of irregularities of
the distribution of the arguments of the signal. Among
them, there is a smoothing of the data during the expo-
sure time, distribution of data in time.

As the FT of the multiplication of functions is a con-
volution of their FTs, in the resulting spectrum, there
will be biases, i.e., the peaks at the beat frequencies. This
is clearly seen in ground-based photometrical surveys.
The observations are carried out during a few months
in the season. Thus the interval of phases slightly shifts
from season to season. An apparent light curve shows
an apparent longer period, which does not exist in a re-
ality. Similarly, there may be problems if there are larger
gaps between the nights even if a complete light curve is
observed.

An example is shown in Fig. 11.10. The model data
are a pure sinusoid with a true period (P0 = 1.1), with
a period of sampling Ps = 1. In the top left figure, the
data show a larger “beat” period Pbeat = Ps ·P0/|P −Ps |
(11, in our example) is present. For this data sample,
the periodogram is the dependence of the test function
S(f ) = S(|f + j ·fs |) on trial frequency, and thus shows
equal peaks, which correspond not only to the correct
frequency f0(= 1/P0 = 0.90909), but for any frequency
f = |f0 + j · fs |, where j is any integer. Moreover, the
periodogram is reflection symmetrical around frequen-
cies j · fs/2. Thus it is recommended to use frequen-
cies in the range (0, fs/2] if the data are equidistant.
The value fs/2 is called the “Nyquist” frequency fN . In
other words, one should have at least two points per pe-
riod. This “main range” of frequencies does not prevent
the periods to be shorter (as in this case). However, one
may not distinguish between the peaks of equal height
to choose the correct period.

The situation becomes better if there are observa-
tions shifted from the “main periodicity.” In Fig. 11.10,
the “complete” dataset is with the time interval δ = 0.1,
so 10 points per unit time interval. The intermediate
values of subsequent points are 2 and 5. It is clearly

seen that the height of the “bias” peaks strongly de-
creases with increasing number of points per Ps . Ob-
viously, “the best” is the case of “no gaps.” Also, we
have compared the periodograms for the same number
of data per Ps for equidistant and “random” distribution
of the arguments. The random distribution shows very
low peaks as compared to the main peak with height
S(f0) = 1 = 100%.

In these samples, we illustrated the influence of the
distribution of data in time, with an exact sinusoid in
the signal. Naturally, the observational noise of the sig-
nal xk will add noise and spurious peaks at the peri-
odogram.

To describe the peaks, sometimes it is recommended
to show a “spectral window” of the observations. The
spectral window may be defined as a complex function

W(f ) = 1

n

n∑

k=1

e2πif tk

= 1

n

n∑

k=1

(cos(2πf tk) + i · sin(2πf tk)) = C̃ + iS̃.

(11.70)

For equidistant points tk = t0 + k · δ,

W(f ) = eiπ ·f ·(2t0+(n−1)δ) · sin(πf δn)

n sin(πf δ)
. (11.71)

The first multiplier has an unit absolute value, and the
function

W̃ (f ) = sin(πf δn)

n sin(πf δ)
(11.72)

is real, symmetric, and periodic with a period 1/δ. Some
properties are W̃ (j/δ) = 1, W̃ (j/(nδ)) = 0 for noninte-
ger ratios j/n. However, the values between these points
are nonzero, biasing the periodogram.

For nonequidistant points, C and S do not cross
zero at the same frequency, but one may determine the
smallest value of f , which corresponds to the minimum
of W̃ (f )| = (C2 + S2)1/2. This value may be named �f0
and may be used to estimate the “effective number of
frequencies” Neff in the periodogram analysis to esti-
mate a false alarm probability (FAP) of a given peak (see
Andronov, 1994a for more details).

To decrease the height of the peaks, it should be rec-
ommended, whenever possible, to break periodicity of
the signal. For ground-based observations, it may be rec-
ommended to use telescopes at different longitudes.

The width of the peaks in the periodogram is con-
stant for frequency and is proportional to P 2 for each
peak, including the aliases!
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FIG. 11.10 Left: The simulated sinusoidal signal with a period P = 1.1 with (1,2,5,10) sampling points per
unit time. At the top figure, the sampling is 1, for lower figures, the points are added every 0.1. Right: The
periodograms are computed using the TP1 methods and represented as functions of f = 1/P .
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11.8 PERIODOGRAM ANALYSIS OF
SIGNALS WITH APERIODIC OR
PERIODIC TRENDS: WHEN
DETRENDING AND PREWHITENING
LEAD TO GENERALLY WRONG
RESULTS

Often the astro and geosignals contain different contri-
butions with different properties, shape, timescale, etc.
These contributions are to be taken into account simul-
taneously to get statistically optimal results.

The simplest model for a periodic signal with a linear
trend is

xc(t) = C1 + C2 · t̃ + C3 cos(2πf t̃) + C4 sin(2πf t̃),

(11.73)

where t̃ = t − t̄ . For the fixed value of f , the term t̄

is usually omitted (i.e., set to zero). However, for dif-
ferential corrections, it is recommended to use a sam-
ple mean value of the times of observations. This im-
proves the quality of the matrix of normal equations
and thus significantly speeds up convergence of itera-
tions (Andronov, 1994a, 2003). In the software MCV,
the user may choose to remove the mean value from
times of observations before the analysis.

The periodogram may be defined as S(f ) = 1 −
�4/�2, where m in �m shows the number of param-
eters.

Recently, Olspert et al. (2018) used the same model
and called it “generalized Lomb–Scargle periodogram
with trend” and applied Bayesian methods for the pe-
riod estimates.

For example, for a multiharmonic multiperiodic sig-
nal superimposed onto a trend approximated with an
algebraic polynomial, one may write a model

xc(t) = C1 +
s0∑

α=1

Cα+1 t̃α+

+
sP∑

β=1

sβ∑

α=1

(Cj cos(2παfβ t̃) + Cj+1 sin(2παfβ t̃)),

(11.74)

j = 2α + s0 + 2
β−1∑

γ=1

sγ .

Here sβ are degrees of the trigonometrical polynomial
corresponding to period Pβ = 1/fβ , and sP is the num-
ber of periods.

Such an approximation is used in the software MCV
(Andronov and Baklanov, 2004) for up to sP = 3 and

a total number of parameters m = 21 in the standard
version.

There is a possibility to improve the initial values of
the period using differential corrections. This should be
done with care, as sometimes the periods taken from a
periodogram are biases, so the matrix of normal equa-
tions is (nearly) degenerate, and the iterations do not
converge to the statistically optimal solution. One may
recommend to make corrections to only one period,
keeping others fixed.

In many monographs and textbooks, there are rec-
ommendations to remove slow trends (“detrending”)
or remove periodic components (“prewhitening”) be-
fore further time series analysis. Although we prefer
to use complete models using neither detrending nor
prewhitening, in the MCV, we have often included this
option.

11.9 ANALYSIS OF MULTIPERIODIC,
MULTIHARMONIC, AND MULTISHIFT
SIGNALS

Similarly to previous expressions, one may write an un-
simplified expression taking into account all the follow-
ing components of variability: multiple periods, nonsi-
nusoidal shape, and possible shifts between the obser-
vations of different observers or different runs.

For the periodogram analysis of multiharmonic sig-
nals with an algebraic polynomial trend, in the MCV,
we propose to use

xc(t) = C1 +
s0∑

α=1

Cα+1 t̃α+

+
s∑

α=1

(Cj cos(2παf t̃) + Cj+1 sin(2παf t̃)),

(11.75)

j = 2α + s0.

Generally, if there are shifts, a special study is needed
to explain their nature. Examples are during multitele-
scope campaigns, when there are different instrumental
systems. Assuming that these differences are not impor-
tant, one may determine these shifts from this model
and then maybe subtract them from the original data to
make a joint dataset. In common programs, this option
is not available, thus sometimes one may subtract a shift
“by eye.” In other programs, a sample mean value is sub-
tracted. Before we discussed how such detrending may
affect results of the periodogram analysis. Thus we rec-
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ommend to use a complete expression, which includes
a separate shift Cα for each filter/channel α, i.e.,

xCα(t) = Cα +
s∑

j=1

(
Cs0−1+2j cos(2πjf t̃)

+ Cs0+2j sin(2πjf t̃)
)

(11.76)

11.10 RUNNING APPROXIMATIONS
11.10.1 General Expressions
They are based on the local approximation xC(t, t0,�t)

in the interval (t0 −�t, t0 +�t) and only a central point
t = t0 is taken into account, so the smoothing function
x̃C(t0,�t) = xC(t0, t0,�t). “Running means” or (a syn-
onym) “moving averages” are most famous local ap-
proximations when the points have an equal weight and
are approximated in this “running” interval by a sample
mean,

xC(t, t0,�t) = 1

n(t0,�t)

∑
|tk−t0|≤ �t

xk, (11.77)

where n(t) is the number of points inside this inter-
val. This may be easily generalized to a case of different
weights of observations wk , i.e.,

xC(t, t0,�t) = 1

n(t0,�t)

∑
|tk−t0|≤ �t

wk · xk, (11.78)

n(t0,�t) =
∑

|tk−t0|≤ �t

wk. (11.79)

Generally, x̃C(t0,�t) is a piecewise constant function,
i.e., is a spline of degree 0 and defect 1. Where the times
are distributed regularly and all wk = 1, the running ap-
proximations are usually defined at the arguments of
observations tk , i.e.,

x̃C(tk,�t) = xC(tk, tk,�t) =
∑
i

hi (�t) · xk+i . (11.80)

The final value of �t should be fixed, so the coefficients
hi of the filter are fixed. The summation takes place for
all i with hi �= 0. The statistical accuracy is

σ [x̃C(tk,�t)] = σ ·
√∑

i

h2
i
(�t), (11.81)

assuming that all σk = σ . The filters may be asym-
metrical, h−i = −hi , symmetrical, h−i = hi , or “gen-
eral.” There are also the “differentiating filters,” e.g.,
hi = (− 1

2 ,0,+ 1
2 ) for the numerical value of the deriva-

tive, or “integrating” ones, e.g., hi = ( 1
3 , 1

3 , 1
3 ) for the

“running mean,” hi = ( 1
3 , 1

3 , 1
3 ) for the “running mean,”

hi = ( 1
4 , 2

4 , 1
4 ) for the central point in the linear ap-

proximation and for integration using the trapezium
method, and hi = ( 1

6 , 4
6 , 1

6 ) for the integration using the
three-point parabolic approximation for the function.
There is a common problem with “border intervals,” as
there may be missing points needed for this sum. Prac-
tically, there may be few approaches. The correct one is
to recompute the values of hi for the asymmetrical case.
Simple approaches are to set missing values to “zero”
(or the sample mean of the whole series); to set to the
nearest “normal” value; or to assume that the series are
periodic, so xk+j ·n = xk for all integer j . For a running
mean, one may not use missing values and compute a
sample mean for a smaller number of points near the
border. Also, one may divide the sum by a sum of used
coefficients hi . All these approximations lead to “bi-
ased” values close to the borders, so we prefer to use the
sets of hi recomputed for a smaller number of points
using the same basic functions and the window func-
tion. General principles of design of the digital filters
were presented in monographs (e.g., Hamming, 1997).

11.10.2 Running Approximations and
Scalegram Analysis for Irregularly
Spaced Data

Obviously, if the variations are periodic, the global co-
sine approximations are preferred. However, many sig-
nals are not harmonic; the individual oscillations may
vary in amplitude, shape, cycle length, etc. For such
“quasiperiodic” oscillations, local approximations at
“running” intervals are more effective. The main idea
is to compare approximations with observations at dif-
ferent timescales. For small �t , the approximation will
be dominated by observational errors, and will have ap-
parent waves of low statistical significance. For very large
�t , the approximation will be bad because of large sys-
tematic difference from the observations.

Andronov (1997) has studied a general case of run-
ning approximations with arbitrary test functions using
additional weight functions (= windowing functions =
filter functions). In this case, Eq. (11.5) should be re-
placed by

(�a · �b) =
n∑

k=1

p(zk) · wk · ak · bk. (11.82)

Here p(z) is the weight function dependent on the
(dimensionless) parameter z = (t − t0)/�t . The local-
ized function p(z) should be zero outside the interval
of smoothing (i.e., for |z| > 1). For smoothing, one
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may recommend symmetrical functions p(−z) = p(z);
otherwise the “forward” and “backward” approxima-
tions will not coincide. The simplest weight function
is the “rectangular” one, p(z) = 1. The disadvantage of
this method is that the smoothing function does not
smoothly vary with time t0 at the mid-interval, and
has discontinuity when a single point enters/leaves the
interval of smoothing. Thus one may recommend to
use additional restrictions for derivative p′(±1) = 0 and
p(z) ≤ 0. Obviously, there may be an infinite number
of such functions, with among them the Hann function
p(z) = cos2(πz/2) = (1 + cos(πz))/2 (Hamming, 1997).
Andronov (1997) proposes the much simpler function
(and thus faster for computations) p(z) = (1 − z2)2. It
has an additional advantage: as the derivative p′(±1) =
0, the derivative of the smoothing function x̃C(tk,�t) is
continuous everywhere. A global approximations using
the cubic splines (Andronov, 1987) has a continuous
second derivative. Because the real time series are always
limited, and often have irregular gaps, there is no real
advantage of using infinite functions like a Gaussian
p(z) = exp(−c · z2), an exponent p(z) = exp(−c · |z|),
etc. The next user’s choice is to define a set of the ba-
sic functions fα(z). Following the tradition of using
algebraic polynomials, the parabola is the next case af-
ter the constant. Obviously, there may be lines in be-
tween. But they may be skipped in a “good” case of
equidistant observations, as they produce the same val-
ues x̃C(tk,�t) at the moments tk . In other words, the
polynomials of orders (0,1), (2,3), etc., are different
for the same data, but the central point is the same.
Thus the “running parabola” will exactly fit the cubic
polynomial at times tk . Moreover, the approximation
has much better properties as compared with either the
“running weighted mean” with this p(z) = (1 − z2)2,
or the “unweighted” (p(z) = 1) parabola. The only pa-
rameter which remained to be determined, is the filter
half-width �t . For this purpose, one has to compute
“scalegrams,” i.e., the dependence of the test functions
on �t . Andronov (1987) used the following characteris-
tics: σO−C , the unbiased estimate of the r.m.s. deviation
of the observations from the fit; σxC , r.m.s. accuracy
of the smoothing function at the moments of observa-
tions; and the SNR. These dependencies are shown in
Fig. 11.11. For an illustration, we have used a relatively
short part of the light curve of R Aqr in the filter V from
the AAVSO database. It was used above for the polyno-
mial approximation in Fig. 11.3.

Briefly, the dependence σO−C should have two
“standstills.” At small �t , which corresponds to statisti-
cal noise (for this sample, the minimum corresponds to
0.070m), the function has a transition to the “standstill”

FIG. 11.11 Scalegrams σO−C , σxC , and SNR as functions
of �t (left) and the � scalegram (right) for the part of the
light curve of R Aqr (same as for the polynomial
approximation at Fig. 11.12). The vertical lines correspond
to the optimal value �t = 110d and five times larger and
smaller for comparison.

at large �t due to increasing influence of the systematic
deviations of the approximation from the observations.

From the position of the transition, it is possible
to estimate the “period,” and the levels of the stand-
still allow to estimate the effective semiamplitude of
the variations. Andronov and Chinarova (2003) intro-
duced these new effective characteristics of quasiperi-
odic signals, namely, the effective amplitudes, periods
(timescales), and slopes of the scalegram. They have
been determined for 173 semiregular variables. Five
stars are characterized by outstanding values of at least
one of the parameters and were chosen for additional
observations to check their peculiar behavior.

The dependence of σxC is more complicated, and
has a single minimum of 0.024m at �t = 110d . This
is one of the criteria to choose �t for a final approx-
imation. The “amplitude” SNR is 34. For very noisy
observations, the maximum SNR is typically shifted to-
wards smaller �t as compared to a minimum of σxC .
Andronov (2003) introduced the “� scalegram,” which
more resembles different periodograms, i.e., showing
“peaks” instead of “transitions.” From the position and
height of the peak, it is possible to determine the ef-
fective period P� and semiamplitude R�. For the data
on R Aqr, P� = 345d . The period estimate is smaller
than 360d ± 2d from the cosine fit, with the initial
epoch for the maximum brightness (minimum magni-
tude) T0 = 2456769.8 ± 1.1d and semiamplitude R =
1.74m ± 0.05m. Andronov (1997) has shown that the
optimal �t ≈ 0.511P for a pure sinusoid with many
(nearly regular) observations during a period. A smaller
value of P� is explained by the presence of harmonics
of the main oscillation. In cases where the variability is
present at many timescales with variable cycle lengths,
the “transitions” at σO−C occur at different �t . Using
the σ scalegram, Andronov et al. (1997) discovered a
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FIG. 11.12 Part of the light curve of R Aqr (same as for the polynomial approximation in Fig. 11.3). The
approximations xc(t) using “running parabola” fit with �t = 110d (optimal) and five times larger and smaller
(the curves are shifted by 1m. Horizontal bars and numbers show the values of the filter half-width �t ).

fractal type of variability of the magnetic cataclysmic
variable AM Her at a very wide range of timescales from
3 seconds to 30 years. The unbiased scatter estimate in-
creases with the filter half-width according to a power
law σO−C ∝ (�t)0.180 from 10−4 to 3000 days. The es-
timate of the fractal dimension is D = 0.32.

11.10.3 Running Sines
For nearly sinusoidal signals, it is expected to use a “run-
ning approximation”

x̃C(t,�t) = C1 + C2 cos(ω · (t − T0))

+ C3 sin(ω · (t − T0)), (11.83)

x̃C(t,�t) = C1 − R cos(ω · (t − TM)), (11.84)

where ω = 2π/P , P is the period, and T0 is the initial
epoch. The coefficients Cα are functions of t0 and �t ,
as only the data in the interval [t0 − �t, t0 + �t] are
used. The following parameters are determined: C1, the
mean (over the period) value; R, the semiamplitude;
TM , the moment of maximum brightness (minimum
stellar magnitude); and brightness at maximum xmax =
C1 − R and minimum xmax = C1 + R. Obviously, TM

may be easily converted to a phase, using T0 and P . The
recommended value �t = P/2, but, for large gaps in
the observations, it may be enlarged, e.g., to �t = P .
This method is effective for studies of many types of
stars – semiregular, symbiotic, Mira-type, intermediate
polars, RR Lyrae-type with the Blazhko effect. This ap-
proximation is close to that used in physics for studies
of amplitude and phase modulations. Another exam-
ple may be temperature changes during a day with a
yearly wave. A review of the method was presented by
Andronov and Chinarova (2013). An extension of this
method may be a shift (in C1, TM ) and scaling (in R)
of nonsinusoidal shapes (“patterns,” “templates”).

11.10.4 Wavelet Analysis
Wavelet analysis is another extension of the Fourier
analysis and of running approximations. It is also re-
lated to dynamic spectra, when the Fourier analysis is
carried out using the window function. In astronomy,
the “seasonal” periodograms are often used, as there are
natural borders of the series of more or less dense ob-
servations. A similar situation is for time series obtained
during a night with gaps between them. In this case,
there is no sense for a constant �t , and the complete
data are binned to (unequal in length) subintervals. If
the signal has no gaps, these intervals may be chosen
also as subsequent nonoverlapping ones. In this case
of the nonoverlapping subintervals, the values at the
periodogram (and other parameters) are statistically in-
dependent.

For overlapping intervals, the “morphing” of the pa-
rameters is more smooth. Similarly to the running ap-
proximations, one may use not only a rectangular win-
dow, but also smooth ones.

If �t is not dependent on the trial period, the termi-
nology is the “dynamic spectra.” For the wavelet analy-
sis, it is assumed that �t = c̃ · P , where c̃ is some con-
stant. For c̃ → ∞, the approximation becomes “global”
rather than “local.”

Andronov (1998, 1999) reviewed the statistical
properties of the test functions of the weighted LS
improvement of the Morlet-type wavelet. Beyond the
typical “wavelet maps,” the additional features are intro-
duced, e.g., the (weighted mean) wavelet periodogram,
the wavelet skeleton, and the wavelet approximation.

For irregularly spaced signals, the “noise” at the
wavelet periodogram may be decreased by a few dozen
percent, and, in some extreme cases, even by a factor of
a few times.
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For the wavelet periodogram, one may use four dif-
ferent functions, which have different asymptotic be-
havior at large and small trial periods. They were com-
pared to the scalegrams (e.g., Andronov and Chinarova,
2001).

The analysis of citation of these papers at the site
Researchgate.net shows numerous applications of the
method not only for astro- and geodata, but even in
medicine (cardiograms).

An example of dependence of the wavelet peri-
odogram on the effective width of the window function
and a comparison to the “running sine” analysis was
presented by Chinarova (2010). The drastic variations
of the semiamplitude of pulsations of the semiregu-
lar variable RU And from nearly constant (0.027m) to
1.204m (Mira-type pulsating variable) were detected.

Andronov and Kulynska (2020) discussed a modifi-
cation of the Morlet-type wavelet by using a compact
weight function p(z) = (1 − z2)2 (initially proposed by
Andronov, 1997 and discussed by Andronov, 1999),
and have tested statistical properties of the parameters
using the traditional matrix form, as well as the “boot-
strap”- generated data.

Mann and Haykin (1991) introduced a generaliza-
tion of Gabor’s Logon Transform, which they called “the
chirplet transform” it is pointed to analysis of signals
with frequency variations.

11.11 MOMENTS OF CHARACTERISTIC
POINTS (O − C ANALYSIS)

11.11.1 Period Determination
One of the methods of analysis is the determination
of the moments of the characteristic points tk only (cf.
Tsesevich, 1973; Kreiner et al., 2001).

They may be subdivided into two main types: the
maxima or minima (extrema) and the moments of
crossings by the approximation of some constant level
(e.g., the γ velocity [mean] by the curve of the radial
velocity). The main expressions were discussed in Sec-
tion 11.2. AAVSO prefers to use the abbreviation ToM
(times of minimum), but it may be extended to times
of maximum and also to times of any other characteris-
tic point.

The simplest mathematical model for O −C analysis
is

tk = T0 + P · Ek + εk, (11.85)

where T0 is called “the initial epoch,” P is the “period,”
Ek is the “cycle number,” and εk is the residual, which
is often called “O − C.”

In the simplest case, P = tk+1 − tk is the ToM cor-
responding to subsequent cycles, e.g., that shown in
Fig. 11.6. For better precision, P = (tn − t1)/(n − 1).

If the (integer) cycle numbers Ek are correct, then
one may determine corrections �T0 and �P using the
LS, and then new statistically optimal values T0 + �T0)

and P + �P .
If the moments tk are rare enough, there may be

problems with determination of the cycle numbers Ek .
In this case, one may apply the greatest common divi-
sor (GCD) algorithm, similar to that proposed by Euclid
for integer numbers: GCD(a, b) = GCD(a, b mod a),
swapping the numbers, if needed, for a < b, and re-
peating until GCD(a,0) = a. For noninteger numbers,
this may be replaced by computing the pairs of differ-
ences �k = tk+1 − tk , and then sorting in increasing
order and trying to find a (generally noninteger) GCD
of all these differences, which will be equal to the period
(Tsesevich, 1973).

A computer algorithm to carry out periodogram
analysis was presented by Dumont et al. (1978).
Andronov (1988) studies the properties of the test func-
tion.

The periodogram analysis for all data points was pro-
posed by Andronov (1991). The initial epoch is set to
T0 = t1. The test periods were chosen as PE = (tn −
t1)/E, where trial values of E started from n−1 to some
reasonably small values, e.g., PE = 0.1d. Then T0 and
PE are corrected using the LS, and the phases are re-
computed, so the test function is a (weighted) sum of
squares of the residuals.

For fast computations, one even may not make the
corrections – in this case, the routine may be realized in
the electronic tables even without programming.

This method is effective for stable periodic varia-
tions and small statistical errors of tk . However, it may
produce a “saw tooth” periodogram in the case of
large phase deviations. This is a typical situation for
cataclysmic variables, where the intervals between the
outbursts vary by few dozen percent (Andronov and
Shakun, 1990), or the minima have large shifts (as, e.g.,
in the cataclysmic variable TT Ari, Kim et al., 2009).

Jetsu and Pelt (1996) had taken into account accura-
cies σk of the individual time points tk under a common
assumption of uncorrelated statistical errors. Then the
accuracy of the time differences is

σkj = σ [tk − tj ] = σ 2
k + σ 2

j . (11.86)

11.11.2 Period Changes
To study changes of the period, the ToM are to be
determined during a long-time monitoring. The main

https://www.researchgate.net/
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mechanisms for the period variations in eclipsing bi-
nary stars are the mass transfer (accretion and excre-
tion due to stellar wind); the magnetic stellar wind and
gravitational radiation; and the changes in the internal
structure in a component. There may be changes of the
O − C, which are related not to the period variations,
but to other mechanisms like the light-time effect due
to presence of a third body (a star or a planet) or multi-
ple objects. The ToM may be shifted due to the presence
of stellar spots. For binary systems at eccentric orbits,
there may be an apsidal motion (cf. Tsesevich, 1973;
Kopal, 1959). The discussion on the statistics of the
minima compiled in “An Atlas of O − C Diagrams of
Eclipsing Binary Stars” (Kreiner et al., 2001) was pre-
sented by Kim et al. (2003). A catalogue of 623 sys-
tems with eccentric orbits and their classification was
presented by Kim et al. (2018). Some system show com-
plicated variations due to few acting mechanisms.

There are few online catalogues of ToM, e.g.,
• http://var2.astro.cz/ocgate/,
• http://www.as.ap.krakow.pl/o-c,
• http://www.bav-astro.eu/index.php/

veroeffentlichungen/service-for-scientists/lkdb-engl,
• http://www.aavso.org/bob-nelsons-o-c-files,
• http://www.aavso.org/observed-minima-timings-

eclipsing-binaries
The compilations of ToM are often published in jour-
nals, e.g., in the “Open European Journal on Variable
Stars” (cf. Paschke, 2018). The relation between period
and ToM of variable stars was discussed by Kopal and
Kurth (1957). Introducing the functions t (E) (M(E)

in their notation) and P(E) as the time and period
corresponding to the cycle number E, one may distin-
guish the “discrete” P(E) = t (E + 1) − t (E) and “con-
tinuous” P(E) = dt (E)/dE definitions. They discussed
some models. In the “continuous” model,

t (E) = T0 +
∫ E

0
P(E) dE. (11.87)

Assuming the simplest model for the period variations,

t (E) = T0 + P0 · E + Q · E2, (11.88)

we get P(E) = P0 + 2QE and dP/dE = 2Q, Ṗ =
dP/dt = (dP/dE)/(dt/dE) = 2Q/(P0 + 2QE). The
characteristic timescale of the period variations is de-
fined usually as τ = P/|Ṗ |, which is equal for this case
to τ = P 2/(2|Q|), and is thus dependent on time. For
Ṗ = const, the period is P(E) = P0 · exp(Ṗ · E), and

t (E) = T0 + P0 · (exp(Ṗ · E) − 1), (11.89)

where the index 0 corresponds to the value at E = 0 (cf.
Andronov and Chinarova, 2013).

Having a model t (E), one may define E(t) as an in-
verse function. It is suitable for compute phases (which
are decimal parts of E(t)) for plotting phase curves. For
parabolic O − C, the option to compute phases is in-
cluded in the software MCV (Andronov and Baklanov,
2004) and MAVKA (Andrych and Andronov, 2019).
However, the phases may be computed also for more
complicated models (e.g., Kim et al., 2005).

11.12 AUTOCORRELATION AND
CROSS-CORRELATION ANALYSIS

11.12.1 Continuous and Discrete Regular
Signals

Autocorrelation analysis is one of classical methods
for data analysis, which was described in hundreds of
textbooks (e.g., Box et al., 2015, Blackman and Tukey,
1959). Astronomical applications were reviewed by
Deeming (1970).

Classical ACF is defined as r = Ru/R0, where

Ru = 1

Nu

n−u∑

k=1

(xk − x̄)(xk+u − x̄). (11.90)

This is applicable to evenly distributed time series
tk = t1 + (k − 1)δ. Obviously, r0 = 1 for any variable sig-
nal. For the simplest case of pure noise with a variance
σ 2

0 , the mathematical expectation is 0 for u �= 0. Sam-
ple ACFs differ from this value; the statistical properties
were studied by Andronov (1994b).

Here we introduced a new variable Nu. For Nu = N ,
the ACF is called the “biased” one. However, the num-
ber of summands in the sum is equal to n − u, thus the
“unbiased” mathematical expectation is for Nu = n − u.

Correlation length is defined as the smallest posi-
tive root of the equation ru = 0. It may be expressed
in units of time, τ0 = δ · u. For a pure sinusoidal signal
with a period P , ru = cos(2πδu/P ) and τ0 = P/4. The
first nonzero maximum corresponds to umax = P/δ. For
quasiperiodic variations, it gives an estimate of some
characteristic cycle length.

For the shot noise or autoregressive (AR) process of
the first degree, ru = ψu and thus it does not cross zero
if the number of observations n is large. However, the
removal of the sample mean value x̄ from the data leads
to a distinct crossing of zero by the ACF (Sutherland et
al., 1978), thus leading to wrong interpretation of the
character of variability, mainly, the shot noise (AR1), or
QPO (AR2).

http://var2.astro.cz/ocgate/
http://www.as.ap.krakow.pl/o-c
http://www.bav-astro.eu/index.php/veroeffentlichungen/service-for-scientists/lkdb-engl
http://www.bav-astro.eu/index.php/veroeffentlichungen/service-for-scientists/lkdb-engl
http://www.aavso.org/bob-nelsons-o-c-files
http://www.aavso.org/observed-minima-timings-eclipsing-binaries
http://www.aavso.org/observed-minima-timings-eclipsing-binaries
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The bias of the ACF increases with decreasing length
of data and more complicated shape of the trend. A cor-
rect set of equations for arbitrary length and the num-
ber of basic functions were presented by Andronov
(1994b).

For the shot noise, the common mathematical model
is the Markov process, or the AR-1 model. The theoret-
ical ACF is ru = ψu = exp(−u/ud), so the decay time
may be determined as τd = udδ = −δ = lnψ . So, the
ACF decreases by a factor of e for the decay time τd .
For multicomponent signals, assuming their statistical
independence,

xk =
m∑

β=1

xβk, (11.91)

Ru =
m∑

β=1

Rβu, (11.92)

ru = n

Nu

m∑

β=1

R̃β0 · rβu, (11.93)

where the relative contribution to the ACF R̃β0 =
Rβ0/R0. Using this algorithm, Andronov et al. (2005)
proposed a four-component model of the ACF of X-Ray
variability of AM Her based on a CHANDRA Obser-
vation, and the second component in the shot noise
variability of AM Her was discovered.

11.12.2 Bias of ACF due to Trend
For astro- and geosignals, the problem arises with taking
into account a sample mean (Sutherland et al., 1978)
or a possible trend. Complete study of the influence of
trend removal to the resulting ACF for any basic func-
tions was presented by Andronov (1994b). In Fig. 11.13,
the ACFs for different lengths are shown for the ini-
tial data without trend removal, removal of the sample
mean, and removal of the cubic approximation. It is
clearly seen that the trend removal significantly affects
the ACF and may lead to wrong physical conclusions.
For example, numerous studies of AM Her have shown
a distinct crossing of zero by the ACF, which is typical
for quasiperiodic oscillations, or the AR2 model, rather
than for the AR1 model, or the shot noise.

11.12.3 Irregularly Spaced Signals
For irregularly spaced signals, the ACF may be com-
puted in two ways.

(1) The data are interpolated, and then the ACF is
computed for such an artificial dataset. This is typically

used for single missing points, e.g., deleted because of
an outlying value, or an absence of measurement,

If the point xk is missing, it may be replaced by
values using a local approximation – linear or cubic:
x̃k = (xk−1 + xk+1)/2 and x̃k = (4 · (xk−2 + xk+2) −
(xk−1 + xk+1))/6. If the accuracy σ is the same for these
points, the accuracy of the interpolated value is σ/

√
2

and σ
√

17/18, respectively. Such an option is included
in the software MCV (Andronov and Baklanov, 2004).

Although the first value is more accurate for uncor-
related noise, one may recommend the second one in
the case of suggested fast variations of the signal at a
timescale of a few δ, where δ is time resolution. Other-
wise the maxima and minima should be flattened.

(2) The second approach is to split the data into
nonoverlapping intervals and to computed mean val-
ues. Then the new time series are equidistant in time,
and the analysis may be carried out.

For example, in the series of papers based on the
observations from the AAVSO database, there is an ap-
proach to make 10d means, i.e., to split the interval
into 10d pieces and treat them as one point. The weak
points of such method may be in a case of significant
variations during these intervals, and the point(s) may
correspond to an “effective time,” which differs from the
mid-interval.

The third method for the general case of distribution
of times tk is not to make time bins for the observa-
tions, but to determine individual time differences and
round them off to an integer number of shifts. This cor-
responds to a “rectangular” time window. One may also
apply a structure function like in the method for the pe-
riodogram analysis.

Another approach is to compute not the sums of
deviations from the fit, but the sum of squares of dif-
ferences between the pairs. So the minimum of � is to
be found, rather than the maximum of the correlation
coefficient r .

The cross-correlation function may be defined in a
similar way – typically by using regular time series,
or making such series by linear/cubic interpolation or
computing a mean in the small intervals.

Contrary to the ACF, the CCF is generally not sym-
metric, and it may be used for estimates for the time
lags between two signals An example may be the time
lag between the daily temperature and the solar heating
at some place, or the light echo due to reemission of the
light from a Supernova explosion by distant clouds in
the vicinities.
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FIG. 11.13 The model signals xk , yk : cosine (one period P1 with some noise) and sine functions (two
periods P1 and P2) and the corresponding ACF, rxx , ryy , and the CCF rxy . The long and short horizontal
lines show periods P1 and P2, respectively.

In Fig. 11.13, the CCF for the model harmonic oscil-
lations with some noise is shown.

The vertical lines correspond to maxima. Definitely,
for periodic functions, the peaks at the CCF repeat pe-
riodically with the same period. However, due to the
different number of the summands n − u, the highest
peak is expected to be closer to zero.

11.13 PRINCIPAL COMPONENT ANALYSIS
AND RELATED METHODS

Singular value decomposition (SVD) and principal
component analysis (PCA) are described in many text-
books (e.g., Forsythe et al., 1977; Press et al., 2007). Its
applications to astronomical time series were reviewed,
e.g., by Andronov (2003); Andronov et al. (2003b);
Mikulášek (2007b).

The classical PCA is based on the analysis of the
covariation matrix for the data obtained in different
channels. It is very closely related to the SVD for the
matrix εαk (typically only a mean value is removed,
but generally one may propose to subtract a smoothing
value):

εαk = xαk − xCαk

σCαk
. (11.94)

Typically, in simpler models, xCαk = x̄α , just using a
sample mean for each channel α.

The main idea is to apply filtering to the time se-
ries by incomplete restoration of the sum, decreasing
the number of members of the sum from m to L.

11.13.1 Principal Component Analysis:
Multichannel Signals

PCA is used for multichannel signals, when, for the
same moment of time tk , there are multiple values of
signal xαk .

The main idea of the analysis using SVD or PCA is
that the accuracy is equal for all measurements in all
channels and all data. For data with very different scat-
ter in different channels, there may be some scaling, e.g.,
by normalizing the data as xak = (xak −x0ak)/σa . In the
two-dimensional case, this leads to a bisector indepen-
dently on the value of the correlation coefficient.

The slope of the line is generally different either from
the regression line, or the line of the orthogonal regres-
sion. For the three-dimensional, the situation becomes
less undetermined. One may make a partial restoration
of the function and use the values σα[O − C] for scal-
ing. In this case, some iterations are needed to get a
self-consistent solution.

In Fig. 11.14, the part of the light curve of SS Cyg,
the prototype dwarf nova, is shown. There are large sea-
sonal gaps, when the star is not visible during the night,
but the measurements are nearly simultaneous. Four fil-
ters (channels) are used. To prepare the data for the
PCA, the observations are to be converted to “pseudo-
simultaneous” ones. It may be done by neglecting the
time difference between the observations in different
channels. Or, alternately, one may use interpolation of
the signal from one channel to times of another one, us-
ing local cubic polynomial. This is implemented in the
software MCV (Andronov and Baklanov, 2004).

In Fig. 11.15, the principal components of variabil-
ity of the signal shown in Fig. 11.14, are presented. One
may note that the components 1 and 2 show distinct
variability, despite very different amplitudes. The com-
ponents 3 and 4 have very low amplitudes, and may be
interpreted as an observational noise.

In Fig. 11.16, we compare color indices computed
using the PCA, and from the approximations using
the “running parabola” approximation with a statisti-
cally optimal value of the filter half-width �t = 0.007d ,
which corresponds to SNR = 78.
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FIG. 11.14 Multicolor BVRI observations of the cataclysmic variable SS Cyg obtained by Robert James
(AAVSO code JM).

FIG. 11.15 Principal components Uαk as a dependence on tk for the observations of the cataclysmic
variable SS Cyg (Fig. 11.14) smoothed using the running parabolae with �t = 0.07d . The right part of the
graph was automatically omitted, as there were only single observations in each filter during these nights.

FIG. 11.16 Color indices based on the data smoothed using the running parabolae (up). The bottom
graph is the first color index, additionally smoothed using the PCA with the number of principal components
L = 2. The amplitude of the smoothed curve has decreased by a factor of ≈ 2, removing two outliers.
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FIG. 11.17 Left: The eigenvectors for SS Cyg of the correlation matrix. Right: Dependence of the
corresponding singular values σα on the number of principal components.

In Fig. 11.17, the eigenvectors vαβ obtained using
the PCA, are shown. There is a clear near-linear depen-
dence for the first two components. As the channels are
BVRI, the effective wavelength of the signal increases
with the number of the component. At the right part of
this figure, there is a dependence of the singular value
on the number of channel. It shows that the compo-
nents 3 and 4 have low amplitudes, and may be ne-
glected.

11.13.2 Case of Noisy Channels of
Simultaneous Signals

This particular case is applied for measurements of the
same signal, which is present in all channels, but the
noise is different, as well as the shift, e.g., the changes of
the apparent stellar magnitude of a sample of constant
stars due to variable extinction and air mass.

Some kind of this approach was introduced by
Andronov and Baklanov (2004) in the method of the
artificial comparison star, which was implemented in
the software MCV. Applications and a description of this
method were presented by Kim et al. (2004).

The method of artificial comparison star allows to
improve accuracy of the comparison star typically by a
few dozen percent. Contrary to the “ensemble photom-
etry” method by Honeycutt (1992), in our method, the
weights for the weighted mean are computed after the
iterations, and do not depend on the brightness in an
approximation.

11.13.3 Singular Spectrum Analysis (SSA)
This method was implemented in the program called
Caterpillar (Golyandina et al., 2001), in which L (the
number of the principal components for restoration) is
defined by the user, so there are no automatic recom-
mendations on what is to be taken into account and
what should be neglected as the noise.

The uni-channel (or “one-channel”) signal is used to
create a pseudomultichannel dataset with m channels.

Then the principal components are computed, and the
user can choose which of the components will be used
for partial restoration of the signal. This is some kind
of smoothing. The coefficients may also be used for a
short-term forecast. It should be noted that the matrix
used for PCA has the components from the autocovari-
ation function.

11.13.4 Effective Amplitudes of Low, Fast,
and Noise Variability

A related method was proposed by Tremko et al. (1996).
The signal is split into three parts – smooth variations
with, e.g., orbital phase (periodic or aperiodic depen-
dent on the method of smoothing), faster correlated
variability (e.g., quasiperiodic oscillations [QPOs] or
flickering), and an uncorrelated noise.

For the residuals of the observations, the covariation
matrix may be computed, the mathematical expectation
of which is

μαβ = σcα · σcβ + σ 2
nα · δαβ, (11.95)

where the Kronecker symbol δαβ = 1 if α = β; otherwise
it is 0. Here σcα and σnα are standard deviations for
correlated contribution and uncorrelated noise, respec-
tively. There are 2n independent values of these param-
eters and n · (n + 1)/2 independent values of the matrix,
taking into account its symmetry, μβα = μαβ . For m = 3,
both numbers are equal to 6, thus one may easily esti-
mate all parameters.

For larger m, the parameters may be determined us-
ing nonlinear LS (Tremko et al., 1996). This method
allows to estimate variances of the correlated signal, so
also to estimate the r.m.s. amplitude of the signal σcα ,
as well as of the correlated noise σnα .

Such method is an effective tool for cataclysmic vari-
ables, where there are aperiodic events like QPO or
flickering, and σcα are proportional to the amplitude
of the signal in the channel α of any shape. Tremko et
al. (1996) used these values to estimate color indices of
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different contributions to variability, and thus the tem-
peratures.

11.14 CONCLUSIONS
• To obtain new statistically significant astrophysical

results, one needs adequate mathematical models.
• The solution is needed for signals with multiple

components, which are of finite length, and the ob-
servations generally are irregularly spaced.

• The variety of types of variability needs elaboration
of special methods, specific for such signals.

• The careful estimate of the FAP prevents publications
of many “beautiful discoveries.”

• The multicomponent character of signals needs com-
plete models instead of “step-by-step” simplified
ones.

• Solution can be achieved by development of an ex-
pert system of advanced complementary algorithms
and programs, which improve existing methods.

• Depending on the stability of the periodic variations,
the following methods are recommended: the global
fits (for the best stability), local fits of an interme-
diate filter half-width �t and periodic shapes (pat-
terns) for “nearly periodic” oscillations (“running
sines,” wavelet), and local fits of smaller �t , which
are effective for nonharmonic and chaotic-like varia-
tions.

• The observations at different longitudes are very
important, as they effectively dump side-bands of
the spectral window, i.e., decreasing the peaks with
“object-observer” periodic beats.
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tochowski Kalendarz Astronomiczny 10, 171.

Andronov, I.L., Kulynska, V.P., 2020. Computer modeling of ir-
regularly spaced signals. Statistical properties of the wavelet
approximation using a compact weight function. Annales
Astronomiae Novae 1, 167–178. arXiv:1912.13096 [astro-
ph.IM].

Andronov, I.L., Marsakova, V.I., 2006. Variability of long-
period pulsating stars. I. Methods for analyzing observa-
tions. Astrophysics 49, 370.

Andronov, I.L., Shakun, L.I., 1990. Astrophysics and Space Sci-
ence 169, 237.

Andronov, I.L., Tkachenko, M.G., 2013. Comparative analysis
of numerical methods of determination of parameters of
binary stars. Case of spherical components. Odessa Astro-
nomical Publications 26, 204.

Andronov, I.L., et al., 1997. Scalegram analysis of the variabil-
ity of the polar AM HER. Odessa Astronomical Publica-
tions 10, 15.

Andronov, I.L., et al., 2003a. Inter-Longitude Astronomy
project: some results and perspectives. Astronomical and
Astrophysical Transactions 22, 793.

Andronov, I.L., et al., 2003b. In: NATO Science Series II,
vol. 105, 325. 2003whdw.conf..325A.

Andronov, I.L., et al., 2005. Four-component model of the
auto-correlation function of AM Her based on a CHANDRA
observation. In: ASP Conference Series, vol. 330, p. 407.

Andronov, I.L., et al., 2008. Astronomy & Astrophysics 486,
855. 2008A&A...486..855A.

Andronov, I.L., et al., 2014. Inter-Longitude Astronomy project:
long period variable stars. Advances in Astronomy and
Space Physics 4, 3.

Andronov, I.L., et al., 2017a. Instabilities in interacting binary
stars. ASP Conference Series 511, 43.

Andronov, I.L., et al., 2017b. Comparative analysis of phe-
nomenological approximations for the light curves of
eclipsing binary stars with additional parameters. Astro-
physics 60, 57.

Andrych, K.D., et al., 2015. “Asymptotic parabola” fits for
smoothing generally asymmetric light curves. Odessa As-
tronomical Publications 28, 158.

Andrych, K.D., et al., 2017. Statistically optimal modeling of
flat eclipses and exoplanet transitions. The “Wall-Supported
Polynomial” (WSP) algoritms. Odessa Astronomical Publi-
cations 30, 57.

Andrych, K.D., et al., 2020. MAVKA: program of statisti-
cally optimal determination of phenomenological param-
eters of extrema. Parabolic spline algorithm and analysis
of variability of the semi-regular star Z UMa. Journal of
Physical Studies 24, 1902. arXiv:1912.07677 [astro-ph.SR],
pp. 1–18.

Andrych, K.D., Andronov, I.L., 2019. MAVKA: software for sta-
tistically optimal determination of extrema. Open Euro-
pean Journal on Variable Stars 197, 65.

Bendat, J.S., Piersol, A.G., 2010. Random Data, Analysis and
Measurement Procedures. John Wiley and Sons, New York.

Blackman, R.B., Tukey, J.W., 1959. The Measurement of Power
Spectra. Dover Publications, Inc., NY.

Bódi, A., Szatmáry, K., Kiss, L.L., 2016. Periodicities of the RV
Tauri-type pulsating star DF Cygni: a combination of Kepler
data with ground-based observations. Astronomy & Astro-
physics 596, A24, 8 pp.

Bopp, B.W., Evans, D.S., Laing, J.D., Deeming, T.J., 1970. Six
spectroscopic binary stars. Monthly Notices of the Royal As-
tronomical Society 147, 355–366. https://doi.org/10.1093/
mnras/147.4.355.

Box, G.E.P., et al., 2015. Time Series Analysis: Forecasting and
Control, 5th Edition. Wiley, p. 712.

Breus, V.V., 2007. Programs for data reduction and optimiza-
tion of the system work. Odessa Astronomical Publica-
tions 20, 32.

Butters, O.W., West, R.G., Anderson, D.R., et al., 2010. The first
WASP public data release. Astronomy & Astrophysics 520,
L10. https://doi.org/10.1051/0004-6361/201015655.

Cherepashchuk, A.M., 1993. Parametric models in inverse
problems of astrophysics. Astronomy Reports 37 (6),
585–594.

Chinarova, L.L., 2010. Wavelet analysis of 173 semi-regular
variables. Odessa Astronomical Publications 23, 25.

Chinarova, L.L., Andronov, I.L., 2000. Catalogue of main char-
acteristics of pulsations of 173 semi-regular stars. Odessa
Astronomical Publications 13, 116.

Clarke, D., 2002. String/Rope length methods using the Lafler-
Kinman statistic. Astronomy & Astrophysics 386, 763–774.
https://doi.org/10.1051/0004-6361:20020258.

Deeming, T.J., 1970. Stochastic variable stars. The Astronomi-
cal Journal 75, 1027. https://doi.org/10.1086/111056.

Deeming, T.J., 1975. Fourier analysis with unequally-spaced
data. Astrophysics and Space Science 36, 137.

Devlen, A., 2015. A new variable star in Perseus: GSC
3692-00624. Open European Journal on Variable Stars 171,
1.

Drake, A.J., et al., 2009. First results from the Catalina Real-
Time Transient Survey. The Astrophysical Journal 696, 870.

Dumont, T., Morguleff, N., Rutily, B., Terzan, A., 1978. A search
for periodicities in the pulsations of Delta Scuti stars. IV.
A new method of computing the period of a complex sig-
nal. Astronomy & Astrophysics 69, 65.

Dworetsky, M.M., 1983. A period-finding method for sparse
randomly spaced observations or “How long is a piece of
string?”. Monthly Notices of the Royal Astronomical So-
ciety 203, 917–924. https://doi.org/10.1093/mnras/203.4.
917.

Efron, B., 1979. Bootstrap methods: another look at the jack-
knife. The Annals of Statistics 7, 1–26.

Efron, B., Tibshirani, R.J., 1993. An Introduction to the Boot-
strap. Chapman & Hall. ISBN 978-0412042317, pp. 436.

Fisher, R.A., 1954. Statistical Methods for Research Workers,
12th Ed. Oliver and Boyd, Edinburgh, pp. xv, 356.

https://doi.org/10.1093/mnras/147.4.355
https://doi.org/10.1051/0004-6361/201015655
https://doi.org/10.1051/0004-6361:20020258
https://doi.org/10.1086/111056
https://doi.org/10.1093/mnras/203.4.917
https://doi.org/10.1093/mnras/147.4.355
https://doi.org/10.1093/mnras/203.4.917


CHAPTER 11 Advanced Time Series Analysis of Generally Irregularly Spaced Signals 223

Forsythe, G.E., Malcolm, M.A., Moler, C.B., 1977. Computer
Methods for Mathematical Computations. Prentice Hall,
p. 270.

Foster, G., 1995. The cleanest Fourier spectrum. The Astronom-
ical Journal 109, 1889–1902.

Fourier, J., 1822. Theorie Analytique de la Chaleur. Firmin Di-
dot. (Reissued by Cambridge University Press, 2009; ISBN
978-1-108-00180-9).

GAIA, 2019. http://gea.esac.esa.int/archive/.
Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001. Analy-

sis of Time Series Structure. SSA and Related Techniques.
Chapman Hall. ISBN 1-58488-194-1, p. 308.

Hamming, R.W., 1997. Digital Filters, Third Edition. Dover
Publications, p. 304.

Haykin, S., 1999. Neural Networks and Learning Machines, 3rd
Ed. Prentice Hall, NJ. ISBN 978-0-13-147139-9, 906 p.

Høg, E., et al., 2000. The Tycho-2 catalogue of the 2.5 million
brightest stars. Astronomy & Astrophysics 355, L27–L30.

Honeycutt, R.K., 1992. CCD ensemble photometry on an in-
homogeneous set of exposures. Publications of the Astro-
nomical Society of the Pacific 104, 435.

Isobe, T., et al., 1990. Linear regression in astronomy. I. The
Astrophysical Journal 364, 104.

Jetsu, L., Pelt, J., 1996. Searching for periodicity in weighted
time point series. Astronomy & Astrophysics. Supplement
Series 118, 587.

Jurkevich, I., 1971. A method of computing periods of cyclic
phenomena. Astrophysics and Space Science 13, 154.

KEPLER, 2019. www.nasa.gov/mission_pages/kepler/.
Kim, C.-H., Kreiner, J.M., Nha, L.-S., 2003. Statistics of times of

minimum light of 1140 eclipsing binary stars. Astrophysics
and Space Science Library 298, 127.

Kim, Y., et al., 2004. CCD photometry using multiple compar-
ison stars. Journal of the Astronomy and Space Sciences 21
(3), 191–200.

Kim, Y., et al., 2005. Orbital and spin variability of the interme-
diate polar BG CMi. Astronomy & Astrophysics 441, 663.

Kim, Y., et al., 2009. Nova-like cataclysmic variable TT Arietis.
QPO behaviour coming back from positive superhumps.
Astronomy & Astrophysics 496, 765.

Kim, Y., et al., 2018. A comprehensive catalog of galactic eclips-
ing binary stars with eccentric orbits based on eclipse tim-
ing diagrams. The Astrophysical Journal. Supplement Se-
ries 235, 41.

Kopal, Z., 1959. Close Binary Systems. Chapman & Hall, Lon-
don. Bibcode: 1959cbs..book.....K.

Kopal, Z., Kurth, R., 1957. The relation between period and
times of the maxima or minima of variable stars. Zeitschrift
für Astrophysik 42, 90.

Kreiner, J.M., Kim, Chun-Hwey, Nha, Il-Seong, 2001. An Atlas
of O −C Diagrams of Eclipsing Binary Stars. Wydawnictwo
Naukowe Akademii Pedagogicznej, Cracow, Poland.

Lafler, J., Kinman, T.D., 1965. An RR Lyrae star survey with
Ihe Lick 20-inch astrograph II. The calculation of RR Lyrae
periods by electronic computer. The Astrophysical Journal.
Supplement Series 11, 216–222. https://doi.org/10.1086/
190116.

Lawson, C.L., Hanson, R.J., 1974. Solving Least Squares Prob-
lem. Prentice - Hall Inc., Englewood Cliffs, New Jersey.

Levenberg, K., 1944. A method for the solution of cer-
tain non-linear problems in least squares. Quarterly of
Applied Mathematics 2 (2), 164–168. https://doi.org/10.
1090/qam/10666.

Lipunov, V.M., et al., 2010. Master robotic net. Advances in As-
tronomy, 349171, 6 pp.

Lomb, N.R., 1976. Least-squares frequency analysis of un-
equally spaced data. Astrophysics and Space Science 39,
447–462. https://doi.org/10.1007/BF00648343.

Mann, S., Haykin, S., 1991. The chirplet transform: a general-
ization of Gabor’s Logon Transform. In: Proc. Vision Inter-
face, pp. 205–212.

Marquardt, D., 1963. An algorithm for least-squares estimation
of nonlinear parameters. SIAM Journal on Applied Mathe-
matics 11 (2), 431–441. https://doi.org/10.1137/0111030.

Marsakova, V.I., Andronov, I.L., 1996. Local fits of signals with
asymptotic branches. Odessa Astronomical Publications 9,
127.

Mikulášek, Z., 2007a. The benefits of the orthogonal LSM mod-
els. Odessa Astronomical Publications 20, 138.

Mikulášek, Z., 2007b. Principal component analysis – an effi-
cient tool for variable stars diagnostics. Astronomical and
Astrophysical Transactions 26, 63.

Mikulášek, Z., 2015. Phenomenological modelling of eclips-
ing system light curves. Astronomy & Astrophysics 584, A8,
13 pp.

Olspert, N., Pelt, J., Käpylä, M.J., Lehtinen, J., 2018. Estimating
activity cycles with probabilistic methods. I. Bayesian gen-
eralised Lomb-Scargle periodogram with trend. Astronomy
& Astrophysics 615, A111. https://doi.org/10.1051/0004-
6361/201732524.

Paczynski, B., 1986. Gravitational microlensing by the
galactic halo. The Astrophysical Journal 304, 1.
ADS:1986ApJ...304....1P.

Paschke, A., 2018. A list of minima and maxima timings. Open
European Journal on Variable Stars 191, 1.

Paunzen, E., Vanmunster, T., 2016. Peranso – light curve and
period analysis software. Astronomische Nachrichten 337,
239–246.

Pelt, J., 1975. Methods for Search of Variable Star Periods. Tartu
Astrofüüs. Obs. Teated, Nr. 52, 24 p., = Preprint No. 5.

Pojmanski, G., 2002. The All Sky Automated Survey. Catalog of
variable stars. I. 0h - 6h quarter of the southern hemisphere.
Acta Astronomica 52, 397–427. 2002AcA....52..397P.

Prabhu, K.M.M., 2014. Window Functions and Their Appli-
cations in Signal Processing. CRC Press, Boca Raton, FL.
ISBN 978-1-4665-1583-3.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.,
2007. Numerical Recipes. The Art of Scientific Computing.
Cambridge University Press, p. 1262.

Renson, P., 1978. Method for finding the periods of variable
stars. Astronomy & Astrophysics 63, 125–129.

Roberts, D.H., Lehar, J., Dreher, J.W., 1987. Time series anal-
ysis with clean – part one – derivation of a spectrum. The
Astronomical Journal 93 (4), 968–989.

http://gea.esac.esa.int/archive/
http://www.nasa.gov/mission_pages/kepler/
https://doi.org/10.1086/190116
https://doi.org/10.1090/qam/10666
https://doi.org/10.1007/BF00648343
https://doi.org/10.1137/0111030
https://doi.org/10.1051/0004-6361/201732524
https://doi.org/10.1086/190116
https://doi.org/10.1090/qam/10666
https://doi.org/10.1051/0004-6361/201732524


224 PART III Knowledge

Samus, N.N., Kazarovets, E.V., Durlevich, O.V., Kireeva, N.N.,
Pastukhova, E.N., 2017. General catalogue of variable stars:
version GCVS 5.1. Astronomy Reports 61, 80.

Scargle, J.D., 1982. Studies in astronomical time series analysis.
II. Statistical aspects of spectral analysis of unevenly spaced
data. The Astrophysical Journal 263, 835–853. https://doi.
org/10.1086/160554.

Schaffer, J., 2015. What not to multiply without necessity. Aus-
tralasian Journal of Philosophy 93 (4), 644–664.

Scheffe, H., 1959. The Analysis of Variance. Wiley, p. 477.
Shao, J., Tu, D., 1996. The Jackknife and Bootstrap, 2nd cor-

rected printing. Springer. ISBN 978-1461269038, pp. 517.
Shul’Berg, A.M., 1971. Close Binary Systems with Spherical

Components. Nauka, Moskva, p. 246.
Stellingwerf, R.F., 1978. Period determination using phase dis-

persion minimization. The Astrophysical Journal 224, 953.
Street, R.A., et al., 2003. SuperWASP: wide angle search for

planets. In: ASP Conference Series, vol. 294, pp. 405–408.
Sturges, H.A., 1926. The choice of a class interval. Journal of

the American Statistical Association 21 (153), 65–66.
Sutherland, P.G., et al., 1978. Short-term time variability of

Cygnus X-1. II. The Astrophysical Journal 219, 1029.
Terebizh, V.Yu., 1998. Similarity law in spectral estimation of a

time series. V. Astrophysics 41, 198–201.
TESS, 2019. heasarc.gsfc.nasa.gov/docs/tess/.
Tikhonov, A.N., 1963. On the solution of ill-posed problems

and the method of regularization. Doklady Akademii Nauk
SSSR 151, 501.

Tkachenko, M.G., Andronov, I.L., Chinarova, L.L., 2016. Phe-
nomenological parameters of the prototype eclipsing bina-
ries Algol, β Lyrae and W UMa. Journal of Physical Stud-
ies 20, 4902.

Tolstov, G.P., 2012. Fourier Series. Courier Corporation, p. 352.
Tremko, J., et al., 1996. Periodic and aperiodic variations in TT

Arietis. Results from an international campaign. Astronomy
& Astrophysics 312, 121.

Tsesevich, V.P. (Ed.), 1973. Eclipsing Variable Stars. J. Wiley,
New York.

Udalski, A., Kubiak, M., Szymanski, M., 1997. Optical gravita-
tional lensing experiment. OGLE-2 – the second phase of
the OGLE project. Acta Astronomica 47, 319–344.

Vavilova, I.B., et al., 2012. Astroinformation resource of the
Ukrainian virtual observatory: joint observational data
archive, scientific tasks, and software. Kinematics and
Physics of Celestial Bodies 28, 85.

Vavilova, I.B., et al., 2017. UkrVO astroinformatics software and
web-services. In: Astroinformatics, Proceedings of the Inter-
national Astronomical Union, IAU Symposium, vol. 325,
p. 361.

Wehlau, William, Leung, Kam-Ching, 1964. The multiple pe-
riodicity of Delta Delphini. The Astrophysical Journal 139,
843.

Wermuth, N., 2011. Multivariate statistical analysis. In: Lovric,
M. (Ed.), International Encyclopedia of Statistical Science,
Part 13. Springer, New York, pp. 915–920.

Wozniak, P.R., et al., 2004. Northern sky variability sur-
vey: public data release. The Astronomical Journal 127,
2436–2449. ADS:2004AJ....127.2436W.

Wright, E.L., et al., 2010. The Wide-field Infrared Survey Ex-
plorer (WISE): mission description and initial on-orbit per-
formance. The Astronomical Journal 140, 1868.

ZTF. https://irsa.ipac.caltech.edu/Missions/ztf.html.

https://doi.org/10.1086/160554
https://heasarc.gsfc.nasa.gov/docs/tess/
https://irsa.ipac.caltech.edu/Missions/ztf.html
https://doi.org/10.1086/160554

